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Abstract- The roles of the variable permeability and Eckert number on the time-dependent MHD natural convective 

transport over a vertical perforated plate are analyzed in this study. The model that formed highly nonlinear governing 

equations is changed using similarity substitutions. Then the coupled ODEs are solved by inserting the finite difference 

method (FDM). The numerical solutions of the fluid temperature, velocity, and concentration are presented 

graphically. The tabular form explored here is the local skin friction coefficient (f′(0)) the heat transfer rate (−θ′(0)) 

and the mass transfer rate (−ϕ′(0)). The results give the temperature and motion of the fluid improvement for growing 

values of the Eckert number. Also, the fluid velocity enhances for growing values of the Darcy number. The values of  

f′(0) increase by about 10% but the heat transfer rate lessens by about 43%  due to rising values of the Eckert number 

(0.5- 2.5). The obtained numerical outcomes are compared with the previously published study. The comparison is 

given to be an excellent contract. 

INTRODUCTION 

The magneto-hydrodynamics (MHD) free convective flow has attracted many researchers due to its 

applications in several engineering problems in plasma studies, boundary layer flow control, geothermal energy 

extraction nuclear reactors, and MHD pumps and generators. A lot of researchers have studied in this area. 

Primarily, Pavlov [1] analyzed the hydromagnetic fluid flow attributed to the deformity of the plane surface. The 

study of heat production or absorption effect on heat passage is significant because these influences are conclusive 

in heat transference. Many researchers examined the effect of heat-absorbing or generating fluids for various flow 

regimes. Taiwo and Dauda [2] investigated the time-dependent flow of magnetized heat absorbing or generating 

viscous fluid. For all fluid properties, viscosity needs to be considered the most in the research of fluid flow. 

Prandtl [3] analyzed a field of fluid dynamics by taking into account viscosity and in this way combining 

theoretical hydraulics and hydrodynamics in the 20th century. The effect of such heat dissipation terms on a time-

dependent state is often neglected. The role of the viscous dissipation function may not be ignored from a practical 

side as it is important in various flow problems. The predominance of heat dissipation on the temperature field is 

relatively small for much lower velocity methods. A dynamic temperature-related approach cannot ignore the 

impact of viscous dissipation which is comparable to the temperature difference. The theory of boundary layer is 

used to explore the heat dissipation influence for both compressible and incompressible flows. Fonsho [4] 

investigated the influences of the dissipation function on the time-dependent MHD radiating gas flow past a 

vertical plate. The role of fixed transpiration on an unsteady natural convection elastics’ viscous fluid flow upon 

a permeable plate was explored by Sen [5]. Uwanta et al. [6] analyzed the impact of heat dissipation on viscoelastic 

fluid flow over an infinite sheet. The influences of heat dissipation on the mixed convective transport of heat-

producing or absorbing fluid with the wall conduction were theoretically studied by Ajibade et al. [7]. Very 

recently, Hasanuzzaman et al. [8] explored the effect of Dufour and Soret on a time-dependent MHD free 

convective fluid flow upon a vertical permeable sheet. They considered the uniform porous plate in their 

simulation. Further, the roles of Eckert number and thermal radiation on time-dependent MHD conductive 

transport across a vertical porous plate were examined by Hasanuzzaman et al. [9].  

This article's key objective is to explain the roles of variable permeability and viscous dissipation on time-

varying MHD convective heat and mass transport past a vertical perforated sheet. The key novelty of this current 

study is also extended by Hasanuzzaman et al. [8] by assuming the variable permeability and viscous dissipation 
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under the FDM which has not been investigated yet. Another creativity of this paper is to investigate the present 

outcomes with those of a previously reported study. Using FDM and the shooting approach in the MATLAB 

scheme, the numerical result for the temperature, concentration, and velocity equations is visually obtained. 

Besides, the local skin friction coefficient and the heat and mass transfer rates are found in the tabular 

representations. 

 

MODEL AND GOVERNING EQUATIONS 

 Let us consider a time-dependent 2D flow of an electrically conducting and viscous incompressible fluid, 

along an infinite vertical permeable flat sheet immersed in a permeable medium. The infinite vertical sheet is 

taken on the x-axis. Also, the vertical sheet is perpendicular to the y-axis. A magnetic field of uniform strength 

𝐁 = (0, B0) is applied transversely to the direction of the flow. U0 is a velocity where the sheet begins to move 

impulsively in its own plane. The concentration and temperature are promoted to Cw and Tw. Since the plate is 

infinite, then 
∂u

∂x
→ 0 as 𝑥 → ∞. For this reason, the fluid velocity is a function of y and t is the function of the 

physical variables only. The physical model and coordinate systems are plotted in Figure 1. 

 

 

 

 

 

 

 

 

Applying the Boussinesq approximation, the e following governing equations Hasanuzzaman et al. [8] are given 

by  

𝜕𝑣

𝜕𝑦
= 0                                                                                           (1) 
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∂C

∂t
+ v

∂C

∂y
= Dm

∂2C

∂y2
+

DmkT

Tm

∂2T

∂y2
                                                          (4) 

For the current problem, the related boundary conditions are 

 𝑢 = U0(t), T = Tw , v = −v(t), 𝐶 = 𝐶𝑤    at   y = 0                               (5) 

 𝑢 = 0, 𝑇 = T∞, v = 0, 𝐶 = 𝐶∞              as y → ∞                                 (6) 

where 𝛽 is the coefficient of thermal expansion, g is the gravitational acceleration,  𝑣 is the component of the 

velocity in the 𝑦  direction, 𝛽∗ is the coefficient of concentration expansion, 𝜌 is the fluid density,  u is the 

component of the velocity along the x −axis, T is the fluid temperature, 𝑇𝑤 is the wall temperature, T∞ is the fluid 

temperature in the free stream, K is the permeability of the porous plate,  C is the fluid concentration, Cw is the 

wall concentration,  𝐶∞ is the free stream concentration, 𝜎′ is the electric conductivity, k is the thermal 

conductivity of the sheet, 𝑇𝑚 is the mean temperature of the fluid, 𝐶𝑠 is the concentration susceptibility, 𝐶𝑝 is the 

specific heat at constant pressure, υ is the kinematic viscosity, Dm is the mass diffusivity coefficient, and kT is 

the thermal diffusion ratio.  
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FIGURE 1. Schematic representation of the physical model and coordinates system 
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Utilizing a similarity variable 𝜎 as 

𝜎 = 𝜎(𝑡)                                                                                         (7) 

where equation (1) is assumed to have a solution in terms of the time-varying length scale (Hasanuzzaman et al. 

[8]) provided by  

 𝑣 = −𝑣0
𝜐

𝜎
                                                                                        (8) 

In this case, v0 is the dimensionless normal velocity at the sheet. Here suction is indicated by v0 > 0 and blowing 

by v0 < 0, respectively. 

We propose the following similarity transformation to simplify the mathematical study of the problem   

𝜂 =
𝑦

𝜎
 , 𝑓(𝜂) =

𝑢

𝑈0

 , 𝜃(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
 , 𝜙(𝜂) =

𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

                            (9) 

The preceding equations (7)–(9) are applied to transform the given equations (1)–(4) into dimensionless coupled 

ODEs: 

𝑓′′(𝜂) + 2𝜉𝑓′(𝜂) + 𝐺𝑟𝜃(𝜂) + 𝐺𝑚𝜙(𝜂) − 𝑀𝑓(𝜂) −
1

𝐷𝑎
𝑓(𝜂) = 0                   (10) 

 𝜃′′(𝜂) + 𝑃𝑟 {2𝜉 𝜃′(𝜂) − 𝐸𝑐 (𝑓′(𝜂))
2

+ 𝐷𝑓𝜙′′(𝜂)} = 0                          (11) 

𝜙′′(𝜂) + 2𝜉𝑆𝑐𝜙′(𝜂) + 𝑆𝑐 𝑆𝑟𝜃′′(𝜂) = 0                                           (12) 

The converted boundary conditions are provided by: 

𝑓(𝜂) = 1 , 𝜙(𝜂) = 1,       𝜃(𝜂) = 1    𝑎𝑡  𝜂 = 0                                       (13) 

𝑓(𝜂) = 0, 𝜙(𝜂) = 0,         𝜃(𝜂) = 0          𝑎𝑡  𝜂 → ∞                                     (14) 

 

where Schmidt number is 𝑆𝑐 =
𝜐

𝐷𝑚
, local Grashof number is 𝐺𝑟 =

gβ(Tw−T∞)σ2

U0υ
 , Prandtl number is 𝑃𝑟 =

𝜌𝜐𝐶𝑝

𝑘
, 

𝐷𝑎 =
𝐾

𝜎2 is the Darcy number, Soret number is 𝑆𝑟 =
𝐷𝑚𝑘𝑇(𝑇𝑤−𝑇∞)

𝜐𝑇𝑚(𝐶𝑤−𝐶∞)
 , Magnetic force parameter is 𝑀 =

𝜎′𝐵0
2𝜎2

𝜌𝜐
 , Ec =

1

ρCp

U0
2

(TW−T∞)
  is the Eckert number,  the Dufour number is 𝐷𝑓 =

𝐷𝑚𝑘𝑇(𝐶𝑤−𝐶∞)

𝐶𝑠𝐶𝑝𝜐(𝑇𝑤−𝑇∞)
,  𝐺𝑚 =

𝑔𝛽∗(𝐶𝑤−𝐶∞)𝜎2

𝑈0𝜐
 is the modified 

local Grashof number, and 𝜉 = 𝜂 +
𝑣0

2
 is the time-dependent parameter.  

The flow parameters are the shear stress (τ), the local Nusselt number  (Nu), and the local Sherwood number 

(Sh) defined as:   τ ∝  f ′(0), Nu ∝ −θ′(0), Sh ∝ −ϕ′ (0)                                                                                         (15) 

NUMERICAL SOLUTION 

The main target is to utilize the Finite difference method (FDM) for solving the ODEs (10)-(12) including the 

boundary conditions (13)–(14) in this research. This method has been satisfied for accuracy and efficiency in 

solving various problems (Ali et al. [10] and Cheng and Lin [11]). The solution domain space is discretized in the 

FMD. 

We will apply grid size ∆𝜂 = ℎ > 0 in 𝜂 -direction, ∆𝜂 =
1

𝑁
, with 𝜂𝑖 = 𝑖ℎ for i = 0,1,..., N. Define 𝑓𝑖 = 𝑓(𝜂𝑖), 

𝜃𝑖 = 𝜃(𝜂𝑖,) and 𝜙𝑖 = 𝜙(𝜂𝑖). 

At the 𝑖𝑡ℎ node, we consider 𝐹𝑖, Θ𝑖, and Φ𝑖 to be the numerical values of 𝑓, 𝜃, and 𝜙, respectively. Hence, we 

suppose: 

𝑓′|𝑖 =
𝑓𝑖+1−𝑓𝑖−1

2ℎ
,     𝜃′|𝑖 =

𝜃𝑖+1−𝜃𝑖−1

2ℎ
,       𝜙′|𝑖 =

𝜙𝑖+1−𝜙𝑖−1

2ℎ
                                  (16) 

𝑓′′|𝑖 =
𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

ℎ2 ,    𝜃′′|𝑖 =
𝜃𝑖+1−2𝜃𝑖+𝜃𝑖−1

ℎ2 ,  𝜙′′|𝑖 =
𝜙𝑖+1−2𝜙𝑖+𝜙𝑖−1

ℎ2                        (17) 

By applying FDM, the system of ODES (10)-(12) is discretized in space which is called the main step. To do this 

we put (16) - (17) into (10)-(12) and neglect the truncation errors. So for (i = 0, 1,..., N), the resulting algebraic 

equations take the form: 

𝐹𝑖+1 − 2𝐹𝑖 + 𝐹𝑖−1 + 𝜉ℎ(𝐹𝑖+1 − 𝐹𝑖−1) + 𝐺𝑟ℎ2Θ𝑖 + 𝐺𝑚ℎ2Φ𝑖 − 𝑀ℎ2𝐹𝑖 −
ℎ2

𝐷𝑎
𝐹𝑖 = 0             (18)                

Θ𝑖+1 − 2Θ𝑖 + Θ𝑖−1 + 𝑃𝑟[𝜉ℎ(Θ𝑖+1 − Θ𝑖−1)+𝐷𝑓(Φ𝑖+1 − 2Φ𝑖 + Φ𝑖−1) − 𝐸𝑐(𝐹𝑖+1 − 𝐹𝑖−1)2] = 0   (19) 

Φ𝑖+1 − 2Φ𝑖 + Φ𝑖−1 + 𝑆𝑐[𝜉ℎ(Φ𝑖+1 − Φ𝑖−1) + 𝑆𝑟(Θ𝑖+1 − 2Θ𝑖 + Θ𝑖−1)] = 0              (20) 
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Also, the boundary conditions are 

𝐹0 = 1,   Θ0 = 1,   Φ0 = 1,   𝐹𝑁 = 0,  Θ𝑁 = 0,   Φ𝑁 = 0                           (21) 

The equations from (18) to (20) represent a nonlinear system of algebraic equations in 𝐹𝑖, Θ𝑖 , and Φ𝑖 . We will 

apply the Newton iteration 

RESULTS AND DISCUSSIONS 

The roles of variable permeability on the time-dependent MHD free convective transport upon a vertical 

perforated plate with viscous dissipation have been analyzed numerically in this study. The ODEs (10)-(12) are 

solved numerically by using the FDM. The dimensionless fluid temperature, velocity, and concentration fields for 

separate values of the dimensionless parameters or numbers are revealed in Figures 2-9. The numerical values 

like the local skin friction coefficient (f′(0)), the heat transfer rate (−θ′(0)), and the mass transfer rate (−ϕ′(0)) 

are given in Tables 1-3. We considered Ec = 0.5, M = 0.5, Pr = 0.71, Da = 0.5, Gr = Gm = 10.0, Df =
0.5, Sr = 2.0  , and Sc = 0.22 in the whole simulation. 

With an enhancement in the Darcy number (Da), the fluid velocity improves as shown in Figure 2. The Darcy 

number measures the permeability of the plate. As the permeability of the plate improves the values of Da enhance. 

Therefore, the fluid motion goes up for growing values of Da. This is because the fluid gets more space to flow 

for the large permeability of the plate. As a result, the fluid velocity exacerbates. The fluid motion is enhanced 

due to the increasing the local modified Grashof number (Gm) as shown in Figure 3. The positive value of Gm>0 

shows the system is heated. It means that increasing values of Gm in the heating plate improves the fluid velocity.  

The momentum boundary layer thickness diminishes for growing values of Gm. The cooling system is observed 

for the negative value of Gm<0. It means that the cooling plate decays the fluid motion for growing values of Gm. 

The symmetrical shape is found for the combined values of (Gm>0) and (Gm<0).  

 
 

 

 
 

 

 

FIGURE 2. Velocity profile for Da FIGURE 3. Velocity profile for Gm 

FIGURE 5. Temperature profile for Ec FIGURE 4. Velocity profile for Ec 

Ec=0.5, M=0.5, Pr=0.71, 

Gr=10.0, Gm=10.0, 

Df=0.5, Sr=2.0, Sc=0.22 Ec=0.5, M=0.5, Pr=0.71, 

Gr=10.0, Da=0.5, 

Df=0.5, Sr=2.0, Sc=0.22 

Gm=10.0, M=0.5, 

Pr=0.71, Gr=10.0, 

Da=0.5, Df=0.5, 

Sr=2.0, Sc=0.22 

Gm=10.0, M=0.5, 

Pr=0.71, Gr=10.0, 

Da=0.5, Df=0.5, 

Sr=2.0, Sc=0.22 
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It is evident from Figure 4 that f(η) goes up for improving values of the Eckert number (Ec). This is because 

by including the viscous dissipation influence (Ec), mechanical energy is transferred into thermal energy. So, the 

fluid becomes thinner and consequently, its velocity is improved. The fluid temperature within the boundary layer 

improves with the enhancement in the Eckert number as shown in Figure 5. The Eckert number (Ec) is a significant 

part of studying the thermal behavior of fluid flow. As a result, the thermal boundary layer becomes thicker and 

lessens heat dissipation. This is because by including the viscous dissipation effect of Ec, the mechanical energy 

is changed into thermal energy. This thermal energy improves the temperature field. The fluid velocity goes down 

with the improvement of the magnetic field parameter (M) as shown in Figure 6. This magnetic force field tends 

to impede the convective fluid velocity. Hence, the imposition of a magnetic field on the flow field creates a 

Lorentz force which in turn reduces the fluid velocity away from the sheet surface. Consequently, the values of 

f′0 lessen at the wall for rising values of M. This result demonstrates that the magnetic field can be utilized to 

regulate the flow. The fluid motion goes down for growing values of the Prandtl number (Pr) as shown in Figure 

7.  We know that the mathematical relation is 𝑃𝑟 =
𝜌𝜐𝐶𝑝

𝑘
. The Prandtl number directly varies with the kinematic 

viscosity. The viscous forces tend to improve the buoyancy forces as Pr goes up. These forces produce slow 

velocity in the boundary layer. That is why, fluid movement is not so easy in the computational area. Hence the 

fluid motion is observed to lessen and the boundary layer thickness is found to decay for large values of Pr. The 

Prandtl number (Pr) inversely varies with the thermal diffusion. With an enhancement in Pr, the thermal diffusion 

lessens. So, the thermal boundary layer becomes thinner. For this reason, the fluid temperature reduces for 

growing values of Pr as demonstrated in Figure 8. Physically, the fluid with a larger Pr gives a higher heat capacity. 

 
 

 

 
 

The role of the separate values of Schmidt number (Sc) on ϕ(𝜂) is decorated in Figure 9. The Schmidt number 

inversely varies as the molecular (species) diffusivity. It is noticed from Figure 9 that the concentration field goes 

down for growing values of Sc. The associated reduction in mass diffusivity provides a small forceful mass 

transfer that reduces the density gradient. So, the density boundary layer thickness reduces for Sc. This is the 

reason the mass transfer uses the interplay with the concentration distribution, and the velocity profile of the 

material can be dominated via Sc. 

FIGURE 9. Concentration profile for Sc FIGURE 8. Temperature profile for Pr 

FIGURE 7. Velocity profile for Pr FIGURE 6. Velocity profile for M 

Gm=10.0, Ec=0.5, 

Pr=0.71, Gr=10.0, 

Da=0.5, Df=0.5, 

Sr=2.0, Sc=0.22 

Gm=10.0, M=0.5, 

Ec=0.50, Gr=10.0, 

Da=0.5, Df=0.5, 

Sr=2.0, Sc=0.22 

Gm=10.0, M=0.5, 

Ec=0.50, Gr=10.0, 

Da=0.5, Df=0.5, 

Sr=2.0, Sc=0.22 

Gm=10.0, M=0.5, 

Ec=0.50, Gr=10.0, 

Da=0.5, Df=0.5, 

Sr=2.0, Pr=0.71 
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TABLE 1. Influence of various values of the Eckert number (Ec) on −ϕ′(0), f′(0)and −θ′(0) 

Ec −θ′(0) f′(0) −ϕ′(0) 

0.5 0.950135283647402 6.26357787458863 0.507185477222976 
1.0 0.813178797235991 6.43009257573554 0.507185477222976 
2.0 0.612041125208695 6.75412094622520 0.507185477222976 
2.5 0.537921752273820 6.90953175361174 0.507185477222976 

 

Table 1 depicts the influence of various values of the Eckert number (Ec) on −θ′(0), f′(0) and −ϕ′(0). The 

values of  f′(0) improve but the values of −θ′(0) decay for growing values of Ec. The increases by about 10% 

and the values of −θ′(0) lessen by about 43% due to increasing values of Ec from 0.5 to 2.5. For this reason, the 

fluid motion and temperature accelerate owing to increased values of Ec. 

 

COMPARABLE TABLES 

 
The numerical result of the existing research has been compared with previously published work which is 

included in Table 3. Numerical outcomes for the amounts of the heat transmission rate at the plate are compared 

with the findings of Hasanuzzaman et al. [8] for the case of base fluid to confirm the validity and correctness of 

the result obtained. 

TABLE 3. Values of  −ϕ′(0) and −θ′(0)  for v0 and Df 

v0 Df −ϕ′(0) 

Hasanuzzaman et al. [8] 

−𝜑′(0) 

Present study 

−𝜃′(0)  

Hasanuzzaman et al. [8] 

−𝜃′(0) 

Present study 

0.5 0.2 0.22187363 0.219355 1.41983 1.49929 

0.5 0.5 0.13702065 0.133550 1.48232 1.36665 

 

CONCLUSIONS 

 
We have analyzed the important roles of the Eckert number and the Darcy number on hydro-magnetic 

convective heat and mass transport upon a vertical perforated plate. The following remarks can be drawn: 

• With growing values of M, the velocity of the fluid particle diminishes. 

• The fluid motion and the temperature lessen for uplifting amounts of Pr.  

• With an increment in Sc, the fluid concentration diminishes.  

• The fluid motion goes up quickly for moving values of Da. 

• With growing values of the Eckert number, the fluid motion and temperature go up quickly.  

• The values of the local skin friction coefficient increase by about 10% but the heat transfer rate lessens 

by about 43%  due to rising values of the Eckert number from 0.5 to 2.5.   
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