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Abstract- The roles of the variable permeability and Eckert number on the time-dependent MHD natural convective
transport over a vertical perforated plate are analyzed in this study. The model that formed highly nonlinear governing
equations is changed using similarity substitutions. Then the coupled ODEs are solved by inserting the finite difference
method (FDM). The numerical solutions of the fluid temperature, velocity, and concentration are presented
graphically. The tabular form explored here is the local skin friction coefficient (f'(0)) the heat transfer rate (—6’(0))
and the mass transfer rate (—¢’(0)). The results give the temperature and motion of the fluid improvement for growing
values of the Eckert number. Also, the fluid velocity enhances for growing values of the Darcy number. The values of
f'(0) increase by about 10% but the heat transfer rate lessens by about 43% due to rising values of the Eckert number
(0.5- 2.5). The obtained numerical outcomes are compared with the previously published study. The comparison is
given to be an excellent contract.

INTRODUCTION

The magneto-hydrodynamics (MHD) free convective flow has attracted many researchers due to its
applications in several engineering problems in plasma studies, boundary layer flow control, geothermal energy
extraction nuclear reactors, and MHD pumps and generators. A lot of researchers have studied in this area.
Primarily, Pavlov [1] analyzed the hydromagnetic fluid flow attributed to the deformity of the plane surface. The
study of heat production or absorption effect on heat passage is significant because these influences are conclusive
in heat transference. Many researchers examined the effect of heat-absorbing or generating fluids for various flow
regimes. Taiwo and Dauda [2] investigated the time-dependent flow of magnetized heat absorbing or generating
viscous fluid. For all fluid properties, viscosity needs to be considered the most in the research of fluid flow.
Prandtl [3] analyzed a field of fluid dynamics by taking into account viscosity and in this way combining
theoretical hydraulics and hydrodynamics in the 20th century. The effect of such heat dissipation terms on a time-
dependent state is often neglected. The role of the viscous dissipation function may not be ignored from a practical
side as it is important in various flow problems. The predominance of heat dissipation on the temperature field is
relatively small for much lower velocity methods. A dynamic temperature-related approach cannot ignore the
impact of viscous dissipation which is comparable to the temperature difference. The theory of boundary layer is
used to explore the heat dissipation influence for both compressible and incompressible flows. Fonsho [4]
investigated the influences of the dissipation function on the time-dependent MHD radiating gas flow past a
vertical plate. The role of fixed transpiration on an unsteady natural convection elastics’ viscous fluid flow upon
apermeable plate was explored by Sen [5]. Uwanta et al. [6] analyzed the impact of heat dissipation on viscoelastic
fluid flow over an infinite sheet. The influences of heat dissipation on the mixed convective transport of heat-
producing or absorbing fluid with the wall conduction were theoretically studied by Ajibade et al. [7]. Very
recently, Hasanuzzaman et al. [8] explored the effect of Dufour and Soret on a time-dependent MHD free
convective fluid flow upon a vertical permeable sheet. They considered the uniform porous plate in their
simulation. Further, the roles of Eckert number and thermal radiation on time-dependent MHD conductive
transport across a vertical porous plate were examined by Hasanuzzaman et al. [9].

This article's key objective is to explain the roles of variable permeability and viscous dissipation on time-
varying MHD convective heat and mass transport past a vertical perforated sheet. The key novelty of this current
study is also extended by Hasanuzzaman et al. [8] by assuming the variable permeability and viscous dissipation
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under the FDM which has not been investigated yet. Another creativity of this paper is to investigate the present
outcomes with those of a previously reported study. Using FDM and the shooting approach in the MATLAB
scheme, the numerical result for the temperature, concentration, and velocity equations is visually obtained.
Besides, the local skin friction coefficient and the heat and mass transfer rates are found in the tabular
representations.

MODEL AND GOVERNING EQUATIONS

Let us consider a time-dependent 2D flow of an electrically conducting and viscous incompressible fluid,
along an infinite vertical permeable flat sheet immersed in a permeable medium. The infinite vertical sheet is
taken on the x-axis. Also, the vertical sheet is perpendicular to the y-axis. A magnetic field of uniform strength
B = (0, B,) is applied transversely to the direction of the flow. U, is a velocity where the sheet begins to move
impulsively in its own plane. The concentration and temperature are promoted to C,, and T,,. Since the plate is

infinite, then g—z — 0 as x — oo. For this reason, the fluid velocity is a function of y and t is the function of the
physical variables only. The physical model and coordinate systems are plotted in Figure 1.
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FIGURE 1. Schematic representation of the physical model and coordinates system

Applying the Boussinesq approximation, the e following governing equations Hasanuzzaman et al. [8] are given
by

v 0 1
0u+ ou 62u+ (T —T.)+ g8 (C — C.) v o'B? )
oT ~ oT  k 0°T v <6u>2 Dy kr 0%C 3
at ”ay h pC,dy* pC,\dy CsC, 0y*? ®)
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For the current problem, the related boundary conditions are
u=U,), T="T,,v=—v(), C=C, at y=0 ()
u=0 T=T,v=0 C=Cy, asy —» o (6)

where f is the coefficient of thermal expansion, g is the gravitational acceleration, v is the component of the
velocity in the y direction, 8 is the coefficient of concentration expansion, p is the fluid density, u is the
component of the velocity along the x —axis, T is the fluid temperature, T,, is the wall temperature, T, is the fluid
temperature in the free stream, K is the permeability of the porous plate, C is the fluid concentration, C,, is the
wall concentration, C, is the free stream concentration, ¢’ is the electric conductivity, k is the thermal
conductivity of the sheet, T, is the mean temperature of the fluid, Cs is the concentration susceptibility, C,, is the
specific heat at constant pressure, v is the kinematic viscosity, D,, is the mass diffusivity coefficient, and kr is
the thermal diffusion ratio.
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Utilizing a similarity variable ¢ as

o=o0(t) @)
where equation (1) is assumed to have a solution in terms of the time-varying length scale (Hasanuzzaman et al.
[8]) provided by

V==Vy— (8)

g

In this case, v, is the dimensionless normal velocity at the sheet. Here suction is indicated by v, > 0 and blowing
by v, < 0, respectively.

We propose the following similarity transformation to simplify the mathematical study of the problem

n=2, =i, 6= e, ©
0 W o

The preceding equations (7)— (9) are applied to transform the given equations (1)—(4) mto dlmensmnless coupled
ODEs:

1
f) +28f"() + Gro () + Gmep () —Mf () — - f(n) =0 (10)
n I ! 2 n
6"(n) + Pr{2¢ 6"(n) — Ec (f'())” + Df " ()} = 0 (1)
¢" () +2§Scp’(n) + Sc Sro"(n) =0 (12)
The converted boundary conditions are provided by:
fam=1, ¢m=1 6m=1 atn=0 (13)
fam =0,  ¢m=0, 6M=0 atn-o (14)
where Schmidt number is Sc = D— local Grashof number is Gr = gB(TV{”)—“")G Prandtl number is Pr = %,
m oV
2

Da = —2 is the Darcy number, Soret number is Sr = W Magnetic force parameteris M = L‘“'Z, Ec=

2 — —
L _ U sthe Eckert number, the Dufour number is Df = M, Gm = 9B (Cw=Co)o” is the modified

Pcp (Tw—Too) CsCpu(Tyw—Too) Uov

local Grashof number, and ¢ =7 + % is the time-dependent parameter.

The flow parameters are the shear stress (t), the local Nusselt number (Nu), and the local Sherwood number
(Sh) definedas: t « f'(0), Nu < —6'(0), Sh < —¢' (0) (15)

NUMERICAL SOLUTION

The main target is to utilize the Finite difference method (FDM) for solving the ODEs (10)-(12) including the
boundary conditions (13)—(14) in this research. This method has been satisfied for accuracy and efficiency in
solving various problems (Ali et al. [10] and Cheng and Lin [11]). The solution domain space is discretized in the
FMD.

We will apply grid size An = h > 0 in n -direction, An = % withn; = ih fori=0,1,..., N. Define f; = f(n,),
0; = 9(’)1‘,) and ¢; = ().

At the i*" node, we consider F;, ©; and ®; to be the numerical values of £, 8,and ¢, respectively. Hence, we
Suppose:

o fi 0 —0;_ —di
Fl, = fz+12hfz 19, = z+12hz 1 o', = ¢L+12h¢L 1 (16)
f”li — fi+1_2h];i+fi—1’ guli — Oi+1— 29 +91 1 ¢H|L — ¢i+1_2h¢;i+¢i—1 (17)

By applying FDM, the system of ODES (10)-(12) is discretized in space which is called the main step. To do this
we put (16) - (17) into (10)-(12) and neglect the truncation errors. So for (i =0, 1,..., N), the resulting algebraic
equations take the form:

2
Fi+1 - ZFL + Fi—l + Eh(Fi+1 - Fi—l) + Grth)i + GmthDi - MhZFi - %Fl =0 (18)
Q141 — 20; + 0,1 + Pr[¢h(Opsq — 0;_1)+Dp (P4 — 20; + D;_1) — Ec(Fiyq — Fi_1)?*] =0 (19)
Diyy — 20 + Dy + Sc[§R(Pyyy — Piq) +57(0141 — 20, +0;1)] =0 (20)
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Also, the boundary conditions are

F0=1, @021, q)():l, FNZO,GNZO, (DNZO (21)
The equations from (18) to (20) represent a nonlinear system of algebraic equations in F;, 0;, and ®;. We will
apply the Newton iteration

RESULTS AND DISCUSSIONS

The roles of variable permeability on the time-dependent MHD free convective transport upon a vertical
perforated plate with viscous dissipation have been analyzed numerically in this study. The ODEs (10)-(12) are
solved numerically by using the FDM. The dimensionless fluid temperature, velocity, and concentration fields for
separate values of the dimensionless parameters or numbers are revealed in Figures 2-9. The numerical values
like the local skin friction coefficient (f'(0)), the heat transfer rate (—6'(0)), and the mass transfer rate (—¢’(0))
are given in Tables 1-3. We considered Ec = 0.5,M = 0.5, Pr = 0.71, Da = 0.5,Gr = Gm = 10.0,Df =
0.5,Sr = 2.0 ,and Sc = 0.22 in the whole simulation.

With an enhancement in the Darcy number (Da), the fluid velocity improves as shown in Figure 2. The Darcy
number measures the permeability of the plate. As the permeability of the plate improves the values of Da enhance.
Therefore, the fluid motion goes up for growing values of Da. This is because the fluid gets more space to flow
for the large permeability of the plate. As a result, the fluid velocity exacerbates. The fluid motion is enhanced
due to the increasing the local modified Grashof number (Gm) as shown in Figure 3. The positive value of Gm>0
shows the system is heated. It means that increasing values of Gm in the heating plate improves the fluid velocity.
The momentum boundary layer thickness diminishes for growing values of Gm. The cooling system is observed
for the negative value of Gm<O0. It means that the cooling plate decays the fluid motion for growing values of Gm.
The symmetrical shape is found for the combined values of (Gm>0) and (Gm<0).

——Da=0.5 —Gm=5.0
25 - - -Da=1.0!. 3t -==-Gm=10.0 |]
Da=1.5 - Gm=20.0
S\e e Da=2.0| | 25 O\ —Gm=-5.0
i 1 = ==-Gm=-10.0
Z1s Ec=05,M=05,Pr=0.71, - Sl U N Gm=-20.0
Gr=10.0, Gm=10.0, 0
1 Df=0.5, Sr=2.0, Sc=0.22 1 Rt g Ec=0.5, M=0.5, Pr=0.71,
Gr=10.0, Da=0.5,
0.5¢ 208/ Df=0.5, Sr=2.0, 5¢=0.22
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- -3
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FIGURE 2. Velocity profile for Da FIGURE 3. Velocity profile for Gm
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FIGURE 4. Velocity profile for Ec FIGURE 5. Temperature profile for Ec
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It is evident from Figure 4 that f(r)) goes up for improving values of the Eckert number (Ec). This is because
by including the viscous dissipation influence (Ec), mechanical energy is transferred into thermal energy. So, the
fluid becomes thinner and consequently, its velocity is improved. The fluid temperature within the boundary layer
improves with the enhancement in the Eckert number as shown in Figure 5. The Eckert number (Ec) is a significant
part of studying the thermal behavior of fluid flow. As a result, the thermal boundary layer becomes thicker and
lessens heat dissipation. This is because by including the viscous dissipation effect of Ec, the mechanical energy
is changed into thermal energy. This thermal energy improves the temperature field. The fluid velocity goes down
with the improvement of the magnetic field parameter (M) as shown in Figure 6. This magnetic force field tends
to impede the convective fluid velocity. Hence, the imposition of a magnetic field on the flow field creates a
Lorentz force which in turn reduces the fluid velocity away from the sheet surface. Consequently, the values of
f'0 lessen at the wall for rising values of M. This result demonstrates that the magnetic field can be utilized to
regulate the flow. The fluid motion goes down for growing values of the Prandtl number (Pr) as shown in Figure

7. We know that the mathematical relation is Pr = %. The Prandtl number directly varies with the kinematic

viscosity. The viscous forces tend to improve the buoyancy forces as Pr goes up. These forces produce slow
velocity in the boundary layer. That is why, fluid movement is not so easy in the computational area. Hence the
fluid motion is observed to lessen and the boundary layer thickness is found to decay for large values of Pr. The
Prandtl number (Pr) inversely varies with the thermal diffusion. With an enhancement in Pr, the thermal diffusion
lessens. So, the thermal boundary layer becomes thinner. For this reason, the fluid temperature reduces for
growing values of Pr as demonstrated in Figure 8. Physically, the fluid with a larger Pr gives a higher heat capacity.

2.5
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FIGURE 6. Velocity profile for M FIGURE 7. Velocity profile for Pr
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FIGURE 8. Temperature profile for Pr FIGURE 9. Concentration profile for Sc

The role of the separate values of Schmidt number (Sc) on ¢(#) is decorated in Figure 9. The Schmidt number
inversely varies as the molecular (species) diffusivity. It is noticed from Figure 9 that the concentration field goes
down for growing values of Sc. The associated reduction in mass diffusivity provides a small forceful mass
transfer that reduces the density gradient. So, the density boundary layer thickness reduces for Sc. This is the

reason the mass transfer uses the interplay with the concentration distribution, and the velocity profile of the
material can be dominated via Sc.
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TABLE 1. Influence of various values of the Eckert number (Ec) on —¢'(0), f'(0)and —8'(0)

Ec —6'(0) f(0) —$'(0)

0.5 0.950135283647402 6.26357787458863 0.507185477222976
1.0 0.813178797235991 6.43009257573554 0.507185477222976
2.0 0.612041125208695 6.75412094622520 0.507185477222976
25 0.537921752273820 6.90953175361174 0.507185477222976

Table 1 depicts the influence of various values of the Eckert number (Ec) on —6'(0), f'(0) and —¢'(0). The
values of f'(0) improve but the values of —8'(0) decay for growing values of Ec. The increases by about 10%
and the values of —8'(0) lessen by about 43% due to increasing values of Ec from 0.5 to 2.5. For this reason, the
fluid motion and temperature accelerate owing to increased values of Ec.

COMPARABLE TABLES

The numerical result of the existing research has been compared with previously published work which is
included in Table 3. Numerical outcomes for the amounts of the heat transmission rate at the plate are compared
with the findings of Hasanuzzaman et al. [8] for the case of base fluid to confirm the validity and correctness of
the result obtained.

TABLE 3. Values of —¢’(0) and —6'(0) for v, and Df

vo  Df —$'(0) —¢'(0) -6'(0) —6'(0)
Hasanuzzaman et al. [8] Present study Hasanuzzaman et al. [8] Present study

05 02 0.22187363 0.219355 1.41983 1.49929

05 05 0.13702065 0.133550 1.48232 1.36665

CONCLUSIONS

We have analyzed the important roles of the Eckert number and the Darcy number on hydro-magnetic
convective heat and mass transport upon a vertical perforated plate. The following remarks can be drawn:

With growing values of M, the velocity of the fluid particle diminishes.

The fluid motion and the temperature lessen for uplifting amounts of Pr.

With an increment in Sc, the fluid concentration diminishes.

The fluid motion goes up quickly for moving values of Da.

With growing values of the Eckert number, the fluid motion and temperature go up quickly.

The values of the local skin friction coefficient increase by about 10% but the heat transfer rate lessens
by about 43% due to rising values of the Eckert number from 0.5 to 2.5.
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