
 

Journal of Advances in Mathematics and Computer Science 
  
34(3-4): 1-9, 2019; Article no.JAMCS.51336 
 

ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

 

_____________________________________ 

*Corresponding author: E-mail: bmihmathkuet@gmail.com, b.m.haque75@gmail.com; 
  
 

A Modified Solution of the Nonlinear Singular Oscillator by 
Extended Iteration Procedure 

 
B. M. Ikramul Haque1* and M. M. Ayub Hossain1,2 

 
1Department of Mathematics, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh. 

2Department of Non-Technical, Shahid Abdur Rab Serniabat Textile Engineering College, Barishal, 
Bangladesh. 

 
Authors’ contributions 

 
This work was carried out in collaboration between the authors. Author BMIH designed the study, 

performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author 
MMAH managed the analyses of the study and managed the literature searches. Both of the authors read 

and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/JAMCS/2019/v34i3-430204 
Editor(s): 

(1) Prof. Radko Mesiar, DSc., Department Head, Department of Mathematics, Faculty of Civil Engineering, Slovak University of 
Technology, Bratislava Radlinského 11 813 68 Bratislava, Slovakia. 

(2) Dr. Amany Mostafa Ibrahim Kawala, Lecturer, Department of Mathematics, Faculty of Science, Helwan University, Egypt. 
(3) Raducanu Razvan, Assistant Professor, Department of Applied Mathematics, Al. I. Cuza University, Romania. 

(4) Prof. Dr. Sheng Zhang, Department of Mathematics, Bohai University, Jinzhou 121013, Jinzhou, China. 
Reviewers: 

(1) Oswaldo González-Gaxiola, Universidad Autónoma Metropolitana Cuajimalpa Campus, Mexico. 
(2) Montri Torvattanabun, Loei Rajabhat University, Thailand. 

(3) Upeksha Perera, University of Kelaniya, Sri Lanka. 
Complete Peer review History: https://sdiarticle4.com/review-history/51336 

 
 
 

Received: 09 August 2019 
Accepted: 13 October 2019 

Published: 26 October 2019 

_______________________________________________________________________________ 
 

Abstract 
 

A modified solution of the nonlinear singular oscillator has been obtained based on the extended iteration 
procedure. We have used an appropriate truncation of the obtained Fourier series in each step of iterations 
to determine the approximate analytic solution of the oscillator. The third approximate frequency of the 
nonlinear singular oscillator shows a good agreement with its exact values. Earlier different authors 
presented the analytic solution of the oscillator by using various types of methods. We have compared the 
results obtained by the modified technique with some of the existing results. We see that some of their 
techniques deviate from higher-order approximations and the present technique performs comparatively 
better.  The rate of change of percentage of error of the presented modified solution shows the validity of 
convergence. 
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1 Introduction 
 
The subject of differential equations is both one of the most beautiful parts of mathematics and essential tool 
for modelling many physical situations like mechanical vibration, nonlinear circuits, chemical oscillation, 
and space dynamics and so on. These equations have shown their usefulness in the field of ecology, business 
cycle and biology. However, to solve the corresponding differential equations, the solution of such problems 
remains necessary. The differential equations may be linear or non-linear, autonomous or non-autonomous. 
Pragmatically, a lot of differentiation that includes physical phenomena are nonlinear. The solutions 
procedures of linear differential equations are comparatively easy and highly developed. On the contrary, it 
is very little known of a general character about nonlinear equations. Ordinarily, the nonlinear problems are 
solved by converting it into linear equations attributing some terms; but such linearization is not possible or 
feasible at all times. In these circumstances, there are a few analytical approaches to find approximate 
solutions to nonlinear problems, for instance; perturbation [1-5], standard as well as modified Linstedt-
Poincare [6], Harmonic balance [7-11], Homotopy [12], Iterative [13-27] methods, He’s new amplitude-
frequency relationship [28], Jacobi collocation [29] etc. Among them, the perturbation method is the most 
widely utilized method in which the nonlinear term is small. Recently, some authors utilize an iteration 
procedure [13-27] which is valid for small together with a large amplitude of oscillation, to attain the 
approximate frequency and the harmonious periodic solution of such nonlinear problems. A few numbers of 
scientists used a modified version of this process to develop the results; luckily the extended iteration 
method sometimes improves the results when the functions are not differentiable which is for the singular 
oscillator. The method of iteration is developed by R.E. Mickens, Lim, Hu and Wu. 
 
The main purpose of this paper is to ease the simplification process and improve the accuracy of the 
approximate analytic solution of ‘Nonlinear Singular Oscillator’ by extended iteration procedure so that it 
can help us to investigate the nature (amplitude, frequency etc) in the nonlinear dynamical systems. 
 

2 The Method 
 
Let us suppose the general form of a nonlinear oscillator modelled by  
 

( ) 0x f x  (0)x A (0) 0x                                                                                           (1) 

 
where over dots denote differentiation concerning time t .  
 

We choose the natural frequency   of this system. Then adding 
2 x  on both sides of Eq. (1), we obtain  

 

 
2 2 x x- ( ) ( )x f x G x     .                                                                                    (2) 

 
Now, formulate the iteration scheme as 
 

 
2

1 1 1( ) ( ) ( )k k k k k k x kx x G x x x G x      k = 0, 1, 2, ...                                     (3) 

 

where     x

G
G

x





 and 0 0( ) cos( ) cosx t A t A                                                                           (4) 
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and 1kx   satisfies the conditions  

 

.0)0(,)0( 11   kk xAx 
                                                                                                            (5) 

 

At each stage of the extended iteration, k  is determined by the requirement that secular terms should not 

occur in the full solution of 1( )kx t . The above procedure gives the sequence of solutions which are 

mentioned here 0 1( ), ( ),x t x t  by. The method can proceed to any order of approximation, but due to 

growing algebraic complexity, the solution is confined to a lower order usually to the second [13]. 
 

3 Solution Procedure 
 
Let us consider the nonlinear singular Oscillator 
 

.01  xx                                                                                                                                     (6)  
 

Adding 
2 x on both sides of Eq. (6), we get  

 
2 2 1 x x- ( )x x G x    

                                                                                             (7) 
 

where 
2 1( ) x- G x x  . 

 

Therefore 
2 2

xG x   . 

 
According to Eq. (3), the extended iteration scheme of Eq. (7) is  
 

2 2 1 2 2
1 1 0 0( ) ( )( )k k k k k k k kx x x x x x x 
        

                                                            (8) 
 

The first approximation 1( )x t  and the frequency 0  will be obtained by putting k=0 in Eq.(8) and using 

Eq.(4) we get 
 

12
01

2
01 )cos(cos   AAxx

                                                                                      (9) 
 

Now expanding 
1(cos ) 
in a truncated Fourier cosine series, Eq. (9) reduces to  

 

2 2
1 0 1 0

2 2
( ) cos cos3x x A

A A
     

.                                                                             (10) 
 

Now secular terms can be eliminated if the coefficient of cos is set to zero. 
  

i.e. 0

2 1.41421

A A
   .                                                                                                          (11) 
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This is the first approximate frequency of the oscillator. 
 
After simplification the Eq. (10) reduces to 
 

2
1 0 1

2
cos3x x

A
  .                                                                                                                (12) 

 
The complete solution is 
 

1( ) cos cos3
8

A
x t C    .                                                                                                       (13) 

 

Using 1(0)x A , we have 
9

8
C A . 

 

Therefore 1

9 1
( ) ( cos cos3 )

8 8
x t A    .                                                                                                (14) 

 
This is the first approximate solution of the oscillator. 
 

Proceeding to the second level of iteration 2( )x t  satisfies the equation 

 
2 2 1 2 2

2 1 2 1 0 0 1 0 1 0

2 2 1
1 1 1 0 0

( ) ( )( )

2

x x x x x x x

x x x x

 

 

       

   


.                                                            (15) 

 
Now expanding second and third term on the right-hand side in a truncated Fourier cosine series, Eq. (15) 
reduces to 
 

2 2 2
2 1 2 1 1

2 4 2 2 4 6
( )cos ( )cos3x x A A

A A

   
   

   
        ,             (16) 

 

 where 
9 1

,
8 8

     

 

Secular terms can be eliminated if the coefficient of cos  is set to zero. 
 

i.e. 1

1.1547

A
                                                                                                                            (17) 

 
This is the second approximate frequency of the oscillator. 
 

After simplification Eq. (16) reduces to 
 

  
2 2

2 1 2 1

2 4 6
( )cos3x x A

A

 
 

 
                                                                           (18) 
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2
2 1 2

0.833
cos3x x

A
                                                                                                           (19) 

 
The complete solution of Eq. (16) is 
 

2 ( ) cos 0.078125 cos3x t C A                                                                                         (20) 

 

Using 2(0)x A , we have  1.078125C A  

 
Therefore, 
 

2

1 1

( ) 1.078125 cos 0.078125 cos3

cos cos3 ,

x t A A

A A

 

   

 

 
                                                                  (21) 

 

where 1 1.078125  and 1 0.078125    

 

Proceeding to the third level of iteration 2( )x t satisfies the equation 

 
 

                                                  
(22) 

 
Now expanding the term on the right-hand side in a Fourier cosine series, the Eq. (22) reduces to 
 

2 2 21 1 1 1
3 2 3 2 1 2 1

2 4 2 2 4 6
( )cos ( ) cos3x x A A

A A

   
   

   
               

(23) 

Secular terms can be eliminated if the coefficient of cos  is set to zero. 
 

 2

1.2511

A
                                                                                                                                  (24) 

 

4 Results and Discussion 
 
An extended iterative method is presented to obtain the approximate solution of the nonlinear singular 
oscillator. In this section, we have expressed the accuracy of the extended iteration method by comparing 
with the existing results from different methods and with the exact frequency of the singular oscillator. To 
demonstrate the accurateness, we have calculated the percentage of errors (denoted by Er (%)) by the 
definitions.  
 

Error 100%e k

e

  
 


  

 

where ; 0,1,2, ,k k    represents the approximate frequencies obtained by the present method and e
represents the corresponding exact frequency of the oscillator. 
 

2 2 2 1
3 2 3 2 2 2 0 02x x x x x x      



 
 
 

Haque and Hossain; JAMCS, 34(3-4): 1-9, 2019; Article no.JAMCS.51336 
 
 
 

6 
 
 

Here we have calculated the first, second and third approximate frequencies 0 , 1 and 2  respectively.  

 
To compare the approximate frequencies, we have also given the existing results determined by Mickens 
iteration method [18], Mickens HB method [9] and Haque’s et al iteration method [19], shown in the 
following Table 1. 
  
We see that the percentage error of the second approximate frequency is greater than the percentage error of 
the first approximate frequency obtained by Mickens [18]. Also, the percentage error of the second 
approximate frequencies obtained by Mickens harmonic balance method [9] and Haque’s et al iteration 
method [19] are greater than the percentage error of second approximate frequencies obtained by the adopted 
iteration method. Therefore, the current method gives a significantly better result than other methods. 
 

Table 1. Comparison of the approximate frequencies with exact frequency 
 

Comparison of the approximate frequencies with exact frequency e  [18] of 
1 0x x   

Exact frequency 
1.253

exact e
A

    

Amplitude 
A  

 
 
 

First approximate 
frequencies 
& 
Error (%) 

 
 
 
 

Second approximate  
frequencies 
& 
Error (%) 

 
 
 
 

Third approximate  
frequencies 
& 
Error (%) 

 
Mickens iteration 
method [18] 

 
 

 

0

1.155
MI

A
   

7.9  

 
 
 

 

1

1.018
MI

A
   

18.1 

 
 
 

 
----- 
 

 
Mickens HB method 
[9] 

 
 

 

0

1.414
MH

A
   

12.84  

 
 
 

 

1

1.273
MH

A
   

1.6  

 
 

 

2

1.273
MH

A
   

1.58  
 
Haque’s et al iteration 
method [19] 

 
 

 

0

1.414
HI

A
   

12.84  

 
 
 

 

1

1.208
HI

A
   

3.63  

 
 
 

 

2

1.265
HI

A
   

0.92  

 
Adopted method 

 
 
 

 

0

1.414

A
   

12.84  

 
 
 

 

1

1.155

A
   

7.85  

 
 
 

 

2

1.251

A
   

0.15  
 

0 , 1 , 2  respectively denote the first, second and third modified approximate frequencies; 0MI and 

1MI  denote the first and second frequencies obtained by Mickens iteration method [18]; 0MH , 1MH

and 2MH  denote the first, second and third frequencies obtained by Mickens HB method [9]; 0HI , 

1HI and 2HI denote the first, second and third frequencies obtained by Haque’s iteration method [19]. 

Error (%) denotes percentage error. 
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5 Convergence and Consistency Analysis 
 
In this article, the result has been improved only by rearranging the governing equation. Although in most of 
the earlier articles, the results have been improved by modifying the method. So the not only modification of 
the model is important but also rearranging is important in the case of the iteration procedure.  
 

We know that the basic idea of Iterative methods is to construct a sequence of solutions kx  (as well as 

frequencies k ) that have the property of convergence  

 

lim
e kx x

k



           or,  

lim
e k

k
  


              (25) 

 

Here ex  is the exact solution of the given nonlinear oscillator.  

 
In the present method, it has been shown that the solution yields the less error in each Iterative step 

compared to the previous Iterative step and finally 2 1.251 1.253e      , where   is a small 

positive number and A  is chosen to be unity. From this, it is clear that the adopted method is convergent. 
 
An Iterative method of the form represented by equation (3) with initial guess given in equation (5) is said to 
be consistent if   
 

lim
0k ex x

k
 


   or,                                          (26) 

  
In the present analysis, we see that 
 

lim
0k e

k
  


, as 2 0e   .              (27) 

 
Thus, the consistency of the method is achieved. 
 

6 Conclusion 
 
Rearranging the equation by an iteration technique the approximations to the first to the third frequencies are 
better than corresponding frequencies, which have been obtained by other techniques. It can be observed that 
the third approximation provides an excellent result. 
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