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Abstract
Haque’s approach with Mickens’ iteration method has been used to obtain the modified analytical solutions of the nonlinear 
jerk oscillator, including displacement time velocity and acceleration. The jerk oscillator represents the features of chaotic 
behavior in numerous nonlinear phenomena, cosmological analysis, kinematical physics, pendulum analysis, etc., such as 
electrical circuits, laser physics, mechanical oscillators, damped harmonic oscillators, and biological systems. In this paper, 
we have used different harmonic terms for different iterative stages using the truncated Fourier series. A comparison is 
made between the iteration method, the improved harmonic balance method, and the homotopy perturbation method. After 
comparison, the suggested approach has been shown to be more precise, efficient, simple, and easy to use. Furthermore, 
there was remarkable accuracy in the comparison between the numerical results and the generated analytical solutions. For 
the third approximate period, the maximum percentage error is 0.014.
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1  Introduction

Mathematics is integrally involved in every aspect of our 
life. Especially in every aspect of our real life, mathemat-
ics has applications. Differential equations (DE) are used as 
tools to solve many difficult problems in our real life. With 
the help of differential equations we can find the formula to 
solve many important problems in many areas of our life like 
mental, physical, medical principles etc. Differential equa-
tions are linear, non-linear, dependent or independent. Non-
linear differential equations (NLDE) play many important 
roles in the area of science and engineering.

Solving linear differential equations (LDEs) is rather sim-
ple. But, due to the nonlinear terms are present, it is exceed-
ingly complicated and challenging to solve nonlinear dif-
ferential equations (NLDEs). Due to this fact, it is common 
practice to solve nonlinear differential equations by convert-
ing them into linear differential equations from a variety of 
perspectives. But to transform all NLDEs into LDEs is not 
often feasible. In these situations, there are some key meth-
ods that can be used to solve the NLDEs without transform-
ing them into LDEs, including the perturbation method, the 
harmonic balance method, and the iteration method.

The perturbation method is appropriate for solving 
nonlinear differential equations where the nonlineari-
ties are small, whereas the harmonic balance method is 
appropriate for solving nonlinear differential equations 
where the nonlinearities are strong, and the iteration 
method is appropriate for solving nonlinear differen-
tial equations with both strong and small nonlinearities. 
Mickens was the first to suggest the Harmonic Balance 
Method (HBM) in 1984. Then Gottlieb, Hu & Tang, and 
other mathematicians contributed to develop the method. 
Iteration Method is a powerful analytical method that 
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can be solved truly nonlinear differential equations. R. 
E. Mickens introduced the iteration method for the first 
time in 1987. The HBM and the iteration method are fun-
damentally different from each other. As for instance in 
the harmonic balance method, the variable has to be ini-
tially gauged up to a certain label but cannot be changed 
later. But it is overcome in iteration method. At different 
stages in the iteration method we can even take different 
types of harmonics for our advantage. For example if we 
are working with 5th harmonic and for our convenience 
we can also work with 3rd harmonic at the next stage. 
So it is an advantage for us that we do not see this kind 
of limitation in the case of iteration method as a method 
of perturbation and harmonic balance.

The third-order derivative of displacement is called 
‘jerk’ and it was first introduced by Schot [26] in 1978. 
In other words jerk is named as the rate of change of 
acceleration. Clearly, considering time, first, second 
and third derivative are respectively referred to veloc-
ity, acceleration and jerk. This type of equation is called 
nonlinear jerk equation.

Jerk equation form is generally

where J(x, ẋ, ẍ) denotes the jerk functions.
Among the researchers who presented analytical solu-

tions to these oscillators, Gottlieb [6] used the inferential 
periodic solution and the lowest order harmonic balance 
method for the corresponding angular frequency. Got-
tlieb found that solution and the angular frequency was 
not accurate enough. To solve the nonlinear jerk equa-
tions and their higher order approximations, Wu et al. [8] 
and Leung et al., [7] conducted an advanced HBM and 
a residual harmonic balance method respectively. The 
objective of their method was to obtain accurate results 
for large amplitude oscillators. To describe higher order 
probabilistic solutions of the non-linear jerk equation Ma 
et al. [5] and Hu [1] conducted the homotopy pertur-
bation method. But their results were not good. Ramos 
[2–4] presented some procedures to solve nonlinear jerk 
equations. It has been observed that the second reduc-
tion procedure yields good solutions in the case of unit 
or tends to unit initial velocities. In [2], Ramos provided 
very good results for the first and second differential 
equations that were obtained by four approximate meth-
ods based on order reduction; this result was as good to 
or more good than the results obtained by the parameter 
perturbation method. A modified method of Mickens for 
a nonlinear jerk equation was presented by Hu et al. [18], 
and Newton's method of approximate angular frequency 

(1)x⃛ = J(x, ẋ, ẍ)

helped to obtain the second order. With cubic nonlineari-
ties, a residual harmonic balance method has been intro-
duced by Leung et al. [7] for describing the boundary 
cycles of the parity. Recently Haque [9] introduced a new 
method of direct iteration [19] with a view to solving the 
nonlinear jerk oscillator, which contained acceleration 
and velocity of displacement time. Mohammadian et al. 
[21], Mohammadian & Shariati [22], Mohammadian & 
Akbarzade [23], Mohammadian [24, 25], Akgül & Hijaz 
[27], Luqman et al. [28], Safdar et al. [29], Bansi et al. 
[30], Partohaghighi et al. [31], Akgül et al.[32], Chen, 
& Xing [33], Cao et al. [34], Gao et al. [35], Chen et al. 
[36], Liu et al. [37], Yin et al. [38], Plastino et al. [39] 
solved various nonlinear problems using some effective 
and important methods.

Some restrictions have been placed on the mathemati-
cal form of the superlative oscillator for achieving a peri-
odic solution for jerk-oscillators. Gottlieb [6] taken into 
consideration only the third order nonlinear function ẋẍ2.

Based on invariance of time-reversal and space-rever-
sal, generalized jerk function is written following the 
form [6] because it carries only third order nonlinearity

Over dot’s are denoted by derivatives with respect to 
time t   and the parameters �, �, � , � and � the actual 
constant is given. Any one or two of these parameters 
(aside from � and � simultaneously) may be set to unity 
by rescaling x and/or t  to produce standard equations 
with fewer control parameters appropriate for more in-
depth analysis. (Of course, a parameter shouldn't be "nor-
malized" in this way if the behavior of a specific term 
that has a very small coefficient needs to be examined.)

The relevant prerequisites are:

Three initial conditions in Eq. (4) periodic require-
ments must be fulfilled. Here at least one of �, �, � , � 
and �  should be non-zero.

In this article, it has been presented Haque’s approach 
with Mickens’ iteration method to obtain the approxi-
mate analytical solutions of the nonlinear jerk oscillator 
including displacement time velocity and acceleration. 
Following the application of the suggested method, more 
accurate, workable, and compatible results were discov-
ered. Effective simplification has been discovered from 
the change, ensuring that the solution is free of alge-
braic complications. The computed results produced by 
the suggested method have been compared to the exact 

(2)x⃛ = 𝛼xẋẍ − 𝛽ẋẍ2 − 𝛾 ẋ − 𝛿x2ẋ − 𝜀ẋ3

(3)x(0) = 0, ẋ(0) = A and ẍ(0) = 0 .
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result as well as the outcomes of other approaches that 
are currently in use. The results obtained exhibit a rapid 
convergence towards the exact values, with errors far less 
than those found in the literature.

2 � The approach

Let's have a look at a nonlinear oscillator that is described by

where the over-dots represent the time-related differentia-
tion, t, over dash denotes integration with respect to time. 
Also Ω is the frequency. By adding Ω2x of both sides of 
Eq. (5), we have

Following [17], we formulate the iteration scheme as

combined with

Herein satisfies the conditions

The requirement that secular words shouldn't appear in the 
solution at any point during the iteration determines Ωk . For 
further information, see [18]. The solutions are provided in 
the following order: x0(t), x1(t), ....... . The approach can be 
applied to any level of approximation, but the solution is lim-
ited to a lower order, typically the second [15] due to increased 
algebraic complexity.

3 � Process for a solution

We have measured the function ẋẍ2 containing velocity times 
acceleration squared i.e. jerk function.

The model of nonlinear jerk oscillator is.

Let ẋ = y where is the space variable y(t) . Then the Eq. (9) 
becomes.

Apparently, Eq. (10) becomes

(4)ẍ + f (ẋ, ẍ) = 0, x(0) = 0, ẋ(0) = A

(5)ẍ + Ω2x = Ω2x − f (ẋ, ẍ) ≡ G(ẋ, ẍ)

(6)ẍk+1 + Ω2

k
xk+1 = G(ẋk, ẍk);k = 0, 1, 2.......

(7)x0(t) = A cos(Ω0t)

(8)xk+1(0) = A, ẋk+1(0) = 0

(9)x⃛ + ẋ = xẋẍ

(10)ÿ + y = yẏy�

Now the iteration scheme is according to.

Equation (7) becomes.

where � = Ω t , for k = 0 the Eq. (12) becomes.

Substituting the right-hand side of Eq. (14) into the elemen-
tary function Eq. (13) and expanding it into a cosine series, 
we get

We must remove cos � from the right side of the Eq. (15) to 
evade secular terms in the solution, and we get

After solving Eq. (15) and meeting the initial requirement 
y1(0) = A we have,

It is necessary to determine Ω1 in relation to this first 
approximation of the solution to Eq. (11). The solution will 
reveal the value of Ω1.

where u = Ω1

Substituting y1 into the Eq. (19) from Eq. (18) and then 
trigonometrically expanding we obtain

where

(11)ÿ + Ω2y = (Ω2 − 1 + ẏy�)y

(12)ÿk+1 + Ω2

k
yk+1 = (Ω2

k
− 1 + ẏky

�
k
)yk

(13)y0 = y0(t) = A cos �

(14)ÿ1 + Ω2

0
y1 = (Ω2

0
− 1 + ẏ0y

�
0
)y0

(15)ÿ1 + Ω2

0
y1 = a11 cos 𝜃 + a13 cos 3𝜃

(16)where a11 =
A

4
(−4 − A2 + 4Ω2

0
) a13 =

A3

4

(17)Ω2

0
=

4 + A2

4

(18)y1(t) = (A + a13
1

8Ω2

0

) cos � + a13
1

−8Ω2

0

cos 3�

(19)ÿ2 + Ω2

1
y2 = (u2 − 1 + z1w1)y1

(20)
ÿ2 + Ω2

1
y2 = a21 cos 𝜃 + a23 cos 3𝜃 + a25 cos 5𝜃

+ a27 cos 7𝜃 + a29 cos 9𝜃
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We must remove cos � from the right side of the Eq. (20) 
to evade secular terms in the solution, and we get

Satisfying the initial condition y2(0) = A , after solving 
equation and we have

It is necessary to determine Ω2 in relation to this second 
approximation of the solution to Eq. (10). The solution will 
reveal the value of Ω2

where v = Ω2

a
21

= −
64A

(4 + A2)
3
−

66A3

(4 + A2)
3
−

76A5

3(4 + A2)
3

−
275A7

64(4 + A2)
3
−

279A9

1024(4 + A2)
3
+

64Au2

(4 + A2)
3

+
50A3

u
2

(4 + A2)
3
+

13A5
u
2

(4 + A2)
3
+

9A7
u
2

8(4 + A2)
3

a23 =
18A3

(4 + A2)3
+ 31A5

2(4 + A2)3
+ 287A7

64(4 + A2)3

+ 223A9

512(4 + A2)3
− 2A3u2

(4 + A2)3

− A5u2

(4 + A2)3
− A7u2

8(4 + A2)3

a25 = −
13A5

6(4 + A2)
3
−

241A7

192(4 + A2)
3
−

93A9

512(4 + A2)
3

a27 =
13A7

192(4 + A2)
3
+

39A9

2048(4 + A2)
3

(21)a29 = −
A9

2048(4 + A2)
3

(22)

Ω1 =

√
196608 + 202752A2 + 77824A4 + 13200A6 + 837A8

√
196608 + 153600A2 + 39936A4 + 3456A6

(23)

y2 =
(
A − a23

1

−8u2
− a25

1

−24u2
− a27

1

−48u2
− a29

1

−80u2

)

Cos[�] + a23
1

−8u2
Cos[3�] + a25

1

−24u2
Cos[5�]

+ a27
1

−48u2
Cos[7�] + a29

1

−80u2
Cos[9�]

(24)ÿ3 + Ω2

2
y3 = (v2 − 1 + z2w2)y2

Substituting y2 from Eq. (23) into the Eq. (24) and then 
expanding in a trigonometric reduce we get,

where

We must remove cos � from the right side of the Eq. (25) 
to evade secular terms in the solution, and we get

(25)ÿ3 + Ω2

2
y3 =

5∑

i=1

a2(2i−1) cos(2i − 1)𝜃

a31 = −
14843406974976A

(
4 + A2

)3(
6144 + 4608A2 + 1136A4 + 93A6

)3

−
48704929136640A3

(
4 + A2

)3(
6144 + 4608A2 + 1136A4 + 93A6

)3

−
73635603677184A5

(
4 + A2

)3(
6144 + 4608A2 + 1136A4 + 93A6

)3

−…………+
453505107A23

v
2

10(4 + A2)
3
(6144 + 4608A2+1136A4 + 93A6)

3

+
303605847A25

v
2

320(4 + A2)
3
(6144 + 4608A2 + 1136A4 + 93A6)

3

a33 = 4174708211712A3

(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

+ 13045963161600A5

(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

+ 93366515662848A7

5(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3
+………

− 57316365A23v2

8(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

− 10768005A25v2

64(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

………

……… .

a323 = 1062763A23

1548288000(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

+ 535081A25

1376256000(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

+ 3232683A27

58720256000(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

(26)

a325 = − 2509A25

1101004800(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3

− 7527A27

11744051200(4 + A2)3(6144 + 4608A2 + 1136A4 + 93A6)3
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Satisfying the initial condition y3(0) = A , after solving 
Eq. (25) we have

where

(27)

Ω
2
=(

√
(1470839609502185029632000

+ 4826192468679044628480000A
2

+ 7296583778952951103488000A
4

+ 6729655286686996758528000A
6

+ 4224062453812034745139200A
8

+ 1905190794429295126118400A
10

+ 635148579378340823040000A
12

+ 158430275820381536256000A
14

+ 29559820082388423147520A
16

+ 4072969446127757557760A
18

+ 402650199557972162560A
20

+ 27028701991773424000A
22

+ 1103351520402981540A
24

+ 20664999056050911A
26))∕

(
√
(1470839609502185029632000

+ 4458482566303498371072000A
2

+ 6185793448860155117568000A
4

+ 5195136748778629890048000A
6

+ 2942060899402643197132800A
8

+ 1183763398031645972889600A
10

+ 347054002037317435392000A
12

+ 74713245367727554560000A
14

+ 11723452070119656652800A
16

+ 1307822024910333542400A
18

+ 98471182016367820800A
20

+ 4493801696683622400A
22

+ 94013857927987200A
24))

(28)y3 =

13∑

j=1

b2j−1 cos(2j − 1)�

b1 =(A(15390791571754665742385707116134400000

+ 66372788653191996014038361938329600000A2

+ 134560875748061218770912364462080000000A4

+…⋯ + 67570451934855362616032854200A32

+ 989314829845834376935281807A34))∕

(425779200(4 + A
2)(6144 + 4608A2 + 1136A4 + 93A6)

(1470839609502185029632000

+ 4826192468679044628480000A2 +……

+ 1103351520402981540A24 + 20664999056050911A26))

It is necessary to determine Ω3 in relation to this second 
approximation of the solution to Eq. (10). The solution will 
reveal the value of Ω3

Similarly the method can be obtained by higher order 
approximation and respectively Eqs.(17, 22, 27),.… repre-
sent the approximate frequencies of the oscillator (10).

4 � Findings and discussion

The proposed method is advanced based on Mickens’ itera-
tion method [20] for solving several classes of nonlinear jerk 
equations. To compare the obtained results to exact results 

b3 =(A3(17350730036700335658353295360000

+ 72113971715035770080030883840000A2

+ 140446403027324546431397658624000A4 +……

+ 476625556767476625248088A30

+ 7833777738590256505155A32))∕(15360(4 + A
2)

(6144 + 4608A2 + 1136A4 + 93A6)

(1470839609502185029632000 +……

+ 27028701991773424000A22

+ 1103351520402981540A24

+ 20664999056050911A26))

………

………

b23 =(A23(1088269312 + 616413312A2

+ 87282441A4)(23592960 + 24330240A2

+ 9397760A4 + 1618520A6 + 105309A8))∕

(8110080(4 + A
2)(6144 + 4608A2 + 1136A4 + 93A6)

(1470839609502185029632000

+ 4826192468679044628480000A2 +……

+ 27028701991773424000A22

+ 1103351520402981540A24

+ 20664999056050911A26))

(29)

b25 = − (193A25(32 + 9A2)(23592960 + 24330240A2

+ 9397760A4 + 1618520A6 + 105309A8))∕

(16384(4 + A
2)(6144 + 4608A2 + 1136A4 + +93A6)

(1470839609502185029632000 +……

+ 27028701991773424000A22

+ 1103351520402981540A24

+ 20664999056050911A26))
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and others existing results obtained from different methods 
of the nonlinear jerk equations, and to calculate the percent-
age error (prevail by %) of our obtained results compared to 
the exact results, we have used the following formula

where the various approximate periods obtained by 
T0;k = 0, 1, 2..... is illustrated the modified method and the 
oscillator's exact period, denoted by the letter h, is indicated 
Te.

We now want to show a comparison of oscillator results. 
That is, the velocity of the displacement time is for the accel-
eration of time and the jerk function containing the veloc-
ity. Nowadays, without the iteration method, Ramos [2], 
Ma et al. [5] and Gottlieb [6] have found approximate solu-
tions, frequency and time approximations to the nonlinear 
jerk oscillators (given in Eq. 10). Here we have used modi-
fied iteration method to get neighboring solutions, which is 

Error =
|||
|

Te − Tk

Te

|||
|
× 100%

quite simple. In most cases our results yielded better results 
than those obtained by other researchers and in many cases 
almost matched other researchers. Here we have considered 
the first, second and third nearest frequencies Ω0,Ω1 and 
Ω2 respectively and corresponding periods are T0, T1 and T2
.Our results are shown in Tables 1 and 2. Besides we have 
also provided the results of Gottlieb [6], Ma et al. [5] and 
Ramos [2] respectively to compare the estimated frequen-
cies. A graph is provided in the Fig. 1 where the comparative 
graph of our obtained result and exact result is presented.

5 � Conclusion

In this study, the majority of solutions are synthesized to be 
much better. The modified solutions demonstrate that the 
modification is more accurate than other existing approaches 
and is valid for the large amplitude of oscillation in the jerk 
system. The adopted modification is determined to be stable, 
efficient, and compliant. Additionally, it offers a significant 
number of appropriate solutions to the nonlinear jerk equa-
tions that occur in applied mathematics, mathematical phys-
ics, and other engineering disciplines, including mechanical, 
electrical, and space engineering. After considering every 
angle of all the ways examined in Table 2, we get to the 
conclusion that the adopted method is much superior to each 
equivalent level demonstrated by other methods. We con-
cluded by summarizing:

(i)	 The suggested approach is an effective strategy for 
examining random oscillations. A severely nonlinear 
oscillator's approximate frequencies and related peri-
odic solutions can be easily and effectively obtained 
using this technique.

(ii)	 The suggested method outperforms previous exist-
ing findings in terms of approximate frequencies and 
related periodic solutions as well as high validity for 
both small and large beginning oscillation amplitudes.

Fig. 1   The third-order approximate solutions for A = 1 of x⃛ + ẋ = xẋẍ  
compare with the corresponding exact solution

Table 1   Analyzing the 
differences between the 
approximate and exact periods 
T
e
 of x⃛ + ẋ = xẋẍ

Initial, second and third modified approximate periods denoted respectively by T
0
 , T

1
 and T

2
 and percentage 

error denotes by Er(%)

A T
exact

Modified T0 Er (%) Modified T1 Er (%) Modified T2 Er (%)

0.1 6.275347 6.275346

1.56 e−5
6.275347

2.65 e−6
6.275347

2.60 e−6

0.2 6.252016 6.252003

2.07 e−4
6.252016

3.35 e−6
6.252016

1.42 e−7

0.5 6.096061 6.095585

1.17 e−1
6.096018

1.24 e−1
6.096060

2.11 e−5

1 5.626007 5.619852

1.09 e−1
5.624306

3.02 e−2
5.625880

2.26 e−3

2 4.491214 4.442883

1.08
4.463270

6.22 e−1
4.484916

1.40 e−1
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(iii)	 The maximum percentage error for the third order 
approximate period of nonlinear Jerk oscillator contain-
ing displacement time velocity and time acceleration is 
1.40 e-1.

(iv)	 It has been determined that the majority of researchers 
have used the procedure to alter the method in order to 
enhance the solutions in the iteration method, but we 
have focused on rearranging the leading oscillators with 
their own merit and selecting appropriate harmonic 
terms from trigonometric expansion. These two have 
been determined to be equally important for obtaining 
better answers.

(v)	 The suggested strategy also yields outstanding results 
for higher-order, while most strategies yield good 
results for first-order answers but not good results for 
higher-order.
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