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Abstract

Haque’s approach with Mickens’ iteration method has been used to obtain the modified analytical solutions of the nonlinear
jerk oscillator, including displacement time velocity and acceleration. The jerk oscillator represents the features of chaotic
behavior in numerous nonlinear phenomena, cosmological analysis, kinematical physics, pendulum analysis, etc., such as
electrical circuits, laser physics, mechanical oscillators, damped harmonic oscillators, and biological systems. In this paper,
we have used different harmonic terms for different iterative stages using the truncated Fourier series. A comparison is
made between the iteration method, the improved harmonic balance method, and the homotopy perturbation method. After
comparison, the suggested approach has been shown to be more precise, efficient, simple, and easy to use. Furthermore,
there was remarkable accuracy in the comparison between the numerical results and the generated analytical solutions. For
the third approximate period, the maximum percentage error is 0.014.
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1 Introduction

Mathematics is integrally involved in every aspect of our
life. Especially in every aspect of our real life, mathemat-
ics has applications. Differential equations (DE) are used as
tools to solve many difficult problems in our real life. With
the help of differential equations we can find the formula to
solve many important problems in many areas of our life like
mental, physical, medical principles etc. Differential equa-
tions are linear, non-linear, dependent or independent. Non-
linear differential equations (NLDE) play many important
roles in the area of science and engineering.
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Solving linear differential equations (LDEs) is rather sim-
ple. But, due to the nonlinear terms are present, it is exceed-
ingly complicated and challenging to solve nonlinear dif-
ferential equations (NLDEs). Due to this fact, it is common
practice to solve nonlinear differential equations by convert-
ing them into linear differential equations from a variety of
perspectives. But to transform all NLDEs into LDE:s is not
often feasible. In these situations, there are some key meth-
ods that can be used to solve the NLDEs without transform-
ing them into LDEs, including the perturbation method, the
harmonic balance method, and the iteration method.

The perturbation method is appropriate for solving
nonlinear differential equations where the nonlineari-
ties are small, whereas the harmonic balance method is
appropriate for solving nonlinear differential equations
where the nonlinearities are strong, and the iteration
method is appropriate for solving nonlinear differen-
tial equations with both strong and small nonlinearities.
Mickens was the first to suggest the Harmonic Balance
Method (HBM) in 1984. Then Gottlieb, Hu & Tang, and
other mathematicians contributed to develop the method.
Iteration Method is a powerful analytical method that

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s43994-024-00148-8&domain=pdf
http://orcid.org/0000-0002-6635-9716
http://orcid.org/0000-0001-9456-6643

Journal of Umm Al-Qura University for Applied Sciences

can be solved truly nonlinear differential equations. R.
E. Mickens introduced the iteration method for the first
time in 1987. The HBM and the iteration method are fun-
damentally different from each other. As for instance in
the harmonic balance method, the variable has to be ini-
tially gauged up to a certain label but cannot be changed
later. But it is overcome in iteration method. At different
stages in the iteration method we can even take different
types of harmonics for our advantage. For example if we
are working with 5th harmonic and for our convenience
we can also work with 3rd harmonic at the next stage.
So it is an advantage for us that we do not see this kind
of limitation in the case of iteration method as a method
of perturbation and harmonic balance.

The third-order derivative of displacement is called
‘jerk’ and it was first introduced by Schot [26] in 1978.
In other words jerk is named as the rate of change of
acceleration. Clearly, considering time, first, second
and third derivative are respectively referred to veloc-
ity, acceleration and jerk. This type of equation is called
nonlinear jerk equation.

Jerk equation form is generally

% = J(x, %, ¥) 1

where J(x, X, X) denotes the jerk functions.

Among the researchers who presented analytical solu-
tions to these oscillators, Gottlieb [6] used the inferential
periodic solution and the lowest order harmonic balance
method for the corresponding angular frequency. Got-
tlieb found that solution and the angular frequency was
not accurate enough. To solve the nonlinear jerk equa-
tions and their higher order approximations, Wu et al. [8]
and Leung et al., [7] conducted an advanced HBM and
a residual harmonic balance method respectively. The
objective of their method was to obtain accurate results
for large amplitude oscillators. To describe higher order
probabilistic solutions of the non-linear jerk equation Ma
et al. [5] and Hu [1] conducted the homotopy pertur-
bation method. But their results were not good. Ramos
[2—4] presented some procedures to solve nonlinear jerk
equations. It has been observed that the second reduc-
tion procedure yields good solutions in the case of unit
or tends to unit initial velocities. In [2], Ramos provided
very good results for the first and second differential
equations that were obtained by four approximate meth-
ods based on order reduction; this result was as good to
or more good than the results obtained by the parameter
perturbation method. A modified method of Mickens for
a nonlinear jerk equation was presented by Hu et al. [18],
and Newton's method of approximate angular frequency
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helped to obtain the second order. With cubic nonlineari-
ties, a residual harmonic balance method has been intro-
duced by Leung et al. [7] for describing the boundary
cycles of the parity. Recently Haque [9] introduced a new
method of direct iteration [19] with a view to solving the
nonlinear jerk oscillator, which contained acceleration
and velocity of displacement time. Mohammadian et al.
[21], Mohammadian & Shariati [22], Mohammadian &
Akbarzade [23], Mohammadian [24, 25], Akgiil & Hijaz
[27], Lugman et al. [28], Safdar et al. [29], Bansi et al.
[30], Partohaghighi et al. [31], Akgiil et al.[32], Chen,
& Xing [33], Cao et al. [34], Gao et al. [35], Chen et al.
[36], Liu et al. [37], Yin et al. [38], Plastino et al. [39]
solved various nonlinear problems using some effective
and important methods.

Some restrictions have been placed on the mathemati-
cal form of the superlative oscillator for achieving a peri-
odic solution for jerk-oscillators. Gottlieb [6] taken into
consideration only the third order nonlinear function 2.

Based on invariance of time-reversal and space-rever-
sal, generalized jerk function is written following the
form [6] because it carries only third order nonlinearity

¥ = ik — i — yx — 6x°k — X’ 2)

Over dot’s are denoted by derivatives with respect to
time t and the parameters a, f, y, 6 and € the actual
constant is given. Any one or two of these parameters
(aside from a and 6 simultaneously) may be set to unity
by rescaling x and/or ¢ to produce standard equations
with fewer control parameters appropriate for more in-
depth analysis. (Of course, a parameter shouldn't be "nor-
malized" in this way if the behavior of a specific term
that has a very small coefficient needs to be examined.)

The relevant prerequisites are:

x(0) =0, %(0) =A and %(0) =0. 3)

Three initial conditions in Eq. (4) periodic require-
ments must be fulfilled. Here at least one of @, f8, y, &
and £ should be non-zero.

In this article, it has been presented Haque’s approach
with Mickens’ iteration method to obtain the approxi-
mate analytical solutions of the nonlinear jerk oscillator
including displacement time velocity and acceleration.
Following the application of the suggested method, more
accurate, workable, and compatible results were discov-
ered. Effective simplification has been discovered from
the change, ensuring that the solution is free of alge-
braic complications. The computed results produced by
the suggested method have been compared to the exact
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result as well as the outcomes of other approaches that
are currently in use. The results obtained exhibit a rapid
convergence towards the exact values, with errors far less
than those found in the literature.

2 The approach

Let's have a look at a nonlinear oscillator that is described by
X+f,x)=0, x(0)=0, x(0)=A 4)

where the over-dots represent the time-related differentia-
tion, t, over dash denotes integration with respect to time.
Also Q is the frequency. By adding Q2x of both sides of
Eq. (5), we have

¥4 Q%% = Q%x — f(x, %) = G(x, %) 5)
Following [17], we formulate the iteration scheme as

X1 + Qxipy = Gl %)k = 0,1,2....... (6)

combined with

Xo(2) = A cos(,1) 7
Herein satisfies the conditions

%er1(0) = A, X1 (0) = 0 ®)

The requirement that secular words shouldn't appear in the
solution at any point during the iteration determines Q,. For
further information, see [18]. The solutions are provided in
the following order: x,(t), x;(?), ........ The approach can be
applied to any level of approximation, but the solution is lim-
ited to a lower order, typically the second [15] due to increased
algebraic complexity.

3 Process for a solution

We have measured the function k%> containing velocity times
acceleration squared i.e. jerk function.
The model of nonlinear jerk oscillator is.

X+ X = xxx ©)]

Let & = y where is the space variable y(¢). Then the Eq. (9)
becomes.

y+y=yp (10)

Apparently, Eq. (10) becomes

J+Qy =@ -1+ (11)
Now the iteration scheme is according to.

et + Qoviar = (@ = L+ 3000 (12)
Equation (7) becomes.

Yo = yo®) =Acos b (13)

where 8 = Qt, for k=0 the Eq. (12) becomes.

1+ 0y = () — 1+ 30Y))v0 (14)

Substituting the right-hand side of Eq. (14) into the elemen-
tary function Eq. (13) and expanding it into a cosine series,
we get

W +ng1 =ay; cos § + a5 cos 30 (15)

A A’
where a; = (-4 —A*+4Q)) a3 = T (16)

‘We must remove cos @ from the right side of the Eq. (15) to

evade secular terms in the solution, and we get

4+ A?
2 _
Q)=

a7

After solving Eq. (15) and meeting the initial requirement
¥,(0) = A we have,

1 1
yl(t)=(A+a138—QS)cos€+al3?% cos 360 (18)

It is necessary to determine Q, in relation to this first
approximation of the solution to Eq. (11). The solution will
reveal the value of Q,.

Yo+ Q?)’z = (u2 — 1+ zyw)y, (19)

where u = Q
Substituting y, into the Eq. (19) from Eq. (18) and then
trigonometrically expanding we obtain

b+ nyz =a,, cos 0 + a,; cos 30 + a,5 cos 50 20)
+ ay7 c0s 70 + a,q cos 90

where
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64A 66A3 76A5
421 =7 3 3 3
(4+A2°  (4+A2° 3(4+A2)
_275AT 27947 64Au’
64(4 +A2°  1024(4 +A2° (4 +A2)
+ 5043u? 134542 9A7y?
4+A2°  @+AY 84 +A%
18A3 3143 287A7
3 = 3 3 3
(4+A2)°  2(4+A2° 644 +A2)
2234°  2A%?
512(4 + A2)° (4 +A2)°
A5u2 A7u2
(4+A2°  8(4+A2)
Lo 134 24147 93A°
6(4+A2°  192(4 +A2)°  512(4 + A2)°
1347 3949
Qy7 = 3 3
192(4 + A2)*  2048(4 + A2)
A9
Uy = ———— 21
2T 2048(4 + A2)° D

We must remove cos 6 from the right side of the Eq. (20)
to evade secular terms in the solution, and we get

o = \/196608 + 202752A2 + 77824A% + 1320046 + 83748

V196608 + 15360042 + 39936A* + 3456A°
(22)
Satisfying the initial condition y,(0) = A, after solving
equation and we have

1 1 1 1
—(A-a23 — 25 —a27 —a29 )
Y2 ( AT T oae T e T M 3o
1 1
Cos[0] + a23 R Cos[30] + a25 =y Cos[56]
1 1
+ 227 Cos{76] + 29— Cos[96)

(23)

It is necessary to determine €2, in relation to this second
approximation of the solution to Eq. (10). The solution will
reveal the value of Q,

34+ Qyy = (¥ = 1+ 2wy, 24

where v = Q,
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Substituting y, from Eq. (23) into the Eq. (24) and then
expanding in a trigonometric reduce we get,

5

F3+Qy; = )y, cos(2i — 1)8 (25)
i=1

where

14843406974976A
(4+A2)° (6144 + 460842 + 1136A* + 9346’
48704929136640A°
(4+A42)° (6144 + 46084 + 1136A% + 934’
73635603677184A°
(4+A42)° (6144 + 46084 + 1136A% + 934’
;. 4535051074312
10(4 + A2)* (6144 + 4608A2+1136A% + 9346)°
. 303605847425,
320(4 + A2)’ (6144 + 4608A2 + 1136A% + 9340)°

a3l = —

417470821171243

(4 + A2’ (6144 + 460842 + 1136A% + 9346)°
+ 1304596316160043

(4 + A2’ (6144 + 460842 + 1136A% + 9346)°
N 93366515662848A7

5(4 + A2)>(6144 + 460842 + 1136A% + 9346)°

5731636542312

8(4 + A2)° (6144 + 4608A2 + 113644 + 93A6)°
3 10768005422

64(4 + A2)> (6144 + 460842 + 113644 + 93A46)°

a33 =

1062763423
1548288000(4 + A2)*(6144 + 460842 + 113644 + 93A46)°
+ 535081425
1376256000(4 + A2)* (6144 + 460842 + 1136A% + 9346)°
+ 3232683A%7
58720256000(4 + A2)°(6144 + 460842 + 113644 + 93A6)°

a323 =

250942
1101004800(4 +A2)3 (6144 + 4608A2 + 113644 + 93A6)3
75274%
1174405120004 + A2)3(6144 +4608A2 + 1136A% + 93A6)3
(26)
We must remove cos 6 from the right side of the Eq. (25)
to evade secular terms in the solution, and we get

a325 = -
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Q, =(1/(1470839609502185029632000
+ 4826192468679044628480000A>
+ 7296583778952951103488000A*
+ 6729655286686996758528000A°
+ 4224062453812034745139200A%
+ 1905190794429295126118400A°
+ 635148579378340823040000A 2
+ 158430275820381536256000A 4
+29559820082388423147520A ¢
+ 4072969446127757557760A '8
+ 402650199557972162560A%°
+27028701991773424000A4%

+ 11033515204029815404%*

+ 20664999056050911A426))/
(1/(1470839609502185029632000
+ 4458482566303498371072000A2
+ 61857934488601551175680004%
+ 5195136748778629890048000A°
+ 29420608994026431971328004%
+ 1183763398031645972889600A 1°
+ 347054002037317435392000A 2
+ 747132453677275545600004 4
+ 11723452070119656652800A '
+ 1307822024910333542400A 8
+984711820163678208004%°

+ 4493801696683622400A
+94013857927987200A44))

27

Satisfying the initial condition y;(0) = A, after solving

Eq. (25) we have
13
y3 = ) by cos(2j—1)0

J=1

where
bl =(A(15390791571754665742385707116134400000
+ 663727886531919960140383619383296000004>
+ 1345608757480612187709123644620800000004*
+ ... 4 6757045193485536261603285420043
+ 989314829845834376935281 807A34))/
(425779200(4 + A2)(6144 + 4608A% + 1136A* + 93A4%)
(1470839609502185029632000
+ 482619246867904462848000042 + ... ...
+ 11033515204029815404%* 4 20664999056050911A4%%))

(28)

b3 =(4%(17350730036700335658353295360000
+ 72113971715035770080030883840000A
+ 1404464030273245464313976586240004% + ... ...
+ 476625556767476625248088A°°
+ 7833777738590256505155A3%)) /(15360(4 + A2)
(6144 + 4608A% + 1136A* + 93A%)
(1470839609502185029632000 + ... ...
+ 2702870199177342400042
+ 11033515204029815404%*
+ 20664999056050911A42%))

b23 =(A?*(1088269312 + 6164133124
+ 87282441A4%)(23592960 + 2433024042
+9397760A* + 1618520A% + 1053094%))/
(8110080(4 + A%)(6144 + 4608A% + 1136A* + 93A%)
(1470839609502185029632000
+ 4826192468679044628480000A2 + ... ...
+27028701991773424000A%
+ 11033515204029815404%*
+ 20664999056050911A26))

b25 = — (1934%5(32 4 942)(23592960 + 243302404
+9397760A* + 1618520A% + 1053094%))/
(16384(4 + A%)(6144 + 4608A + 1136A* + +93A%)
(1470839609502185029632000 + ... ...
+ 27028701991773424000A%
+ 11033515204029815404%*

+206649990560509114%°))
29)
It is necessary to determine €25 in relation to this second
approximation of the solution to Eq. (10). The solution will
reveal the value of Qg
Similarly the method can be obtained by higher order
approximation and respectively Eqs.(17, 22, 27),.... repre-
sent the approximate frequencies of the oscillator (10).

4 Findings and discussion
The proposed method is advanced based on Mickens’ itera-

tion method [20] for solving several classes of nonlinear jerk
equations. To compare the obtained results to exact results

@ Springer
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Table 1 Analyzing the

: A T ruct Modified T, Er (%) Modified T, Er (%) Modified T, Er (%)
differences between the -
approximate and exact periods 0.1 6.275347 6.275346 6.275347 6.275347
T, of ¥ + & = xi% 1.56 77 2.65¢7° 2.60e~°
0.2 6.252016 6.252003 6.252016 6.252016
2.07 e 3.35¢7° 1.42¢77
0.5 6.096061 6.095585 6.096018 6.096060
1.17 7! 1.24 ¢! 2.11e7?
1 5.626007 5.619852 5.624306 5.625880
1.09 ¢! 3.02¢e72 226¢73
2 4491214 4.442883 4.463270 4484916
1.08 6.22¢7! 1.40¢7!

Initial, second and third modified approximate periods denoted respectively by 7)), T, and T, and percentage

error denotes by Er(%)

and others existing results obtained from different methods
of the nonlinear jerk equations, and to calculate the percent-
age error (prevail by %) of our obtained results compared to
the exact results, we have used the following formula

Error = x 100%

e

where the various approximate periods obtained by
Ty:k=0,1,2..... is illustrated the modified method and the
oscillator's exact period, denoted by the letter h, is indicated
Te.

We now want to show a comparison of oscillator results.
That is, the velocity of the displacement time is for the accel-
eration of time and the jerk function containing the veloc-
ity. Nowadays, without the iteration method, Ramos [2],
Ma et al. [5] and Gottlieb [6] have found approximate solu-
tions, frequency and time approximations to the nonlinear
jerk oscillators (given in Eq. 10). Here we have used modi-
fied iteration method to get neighboring solutions, which is

1.5
ok \ Ve 7™\
\ / \ / \
\ / \ I
0.5 \ /
\ \
0 \ ] {
\2 A 6 8 / 10 12 14
\ / ,
/ \ f
it | \
0.5 \i / \ !
:j_j §
-1 g
——Proposed ——Exact
-1.5

Fig. 1 The third-order approximate solutions for A=1 of X + X = xiX
compare with the corresponding exact solution
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quite simple. In most cases our results yielded better results
than those obtained by other researchers and in many cases
almost matched other researchers. Here we have considered
the first, second and third nearest frequencies Q,, 2, and
Q, respectively and corresponding periods are T, 7; and T,
.Our results are shown in Tables 1 and 2. Besides we have
also provided the results of Gottlieb [6], Ma et al. [5] and
Ramos [2] respectively to compare the estimated frequen-
cies. A graph is provided in the Fig. 1 where the comparative
graph of our obtained result and exact result is presented.

5 Conclusion

In this study, the majority of solutions are synthesized to be
much better. The modified solutions demonstrate that the
modification is more accurate than other existing approaches
and is valid for the large amplitude of oscillation in the jerk
system. The adopted modification is determined to be stable,
efficient, and compliant. Additionally, it offers a significant
number of appropriate solutions to the nonlinear jerk equa-
tions that occur in applied mathematics, mathematical phys-
ics, and other engineering disciplines, including mechanical,
electrical, and space engineering. After considering every
angle of all the ways examined in Table 2, we get to the
conclusion that the adopted method is much superior to each
equivalent level demonstrated by other methods. We con-
cluded by summarizing:

(i) The suggested approach is an effective strategy for
examining random oscillations. A severely nonlinear
oscillator's approximate frequencies and related peri-
odic solutions can be easily and effectively obtained
using this technique.

(i) The suggested method outperforms previous exist-
ing findings in terms of approximate frequencies and
related periodic solutions as well as high validity for
both small and large beginning oscillation amplitudes.
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Table2 Approximate periods A T

; y Modified T. Gottlieb T (2004) Maetal. T, (2008) Ramos 7,
exact 2(Second) G M R
obtained by the proposed Er (%) [6] Er (%) [5] Er (%) (2010) [21]
method compare with exact Er (%)
periods 7, and other existing
periods of ¥ + & = xix 0.1 6.275347 6.275347 6.275346 6.275347 6.275329
2.60e° 13e7 25e7° 72e7
0.2 6.252016 6.252016 6.252003 6.252016 6.251740
1.42¢77 211e™* 1.6e7’ l.1e™3
0.5 6.096061 6.096060 6.095585 6.096059 6.085649
211e7 7.08¢73 321e7 4.6¢7?
1 5.626007 5.625880 5.619852 5.625795 5.477174
2.26¢73 1.09 ¢! 38¢73 9.0e”!
2 4.491214 4.484916 4.442883 4.482081 4.466205
1.40¢7! 1.08 2.03 56¢7!

Approximate period obtained by Gottlieb is denoted by T, Approximate second period obtained by Ma
et al. and Ramos respectively denoted by 7),,, T, and the modified second approximate periods obtained
by us is denoted by 7,. Percentage error is denoted by Er(%)

(iii)) The maximum percentage error for the third order
approximate period of nonlinear Jerk oscillator contain-
ing displacement time velocity and time acceleration is
1.40 e-1.
It has been determined that the majority of researchers
have used the procedure to alter the method in order to
enhance the solutions in the iteration method, but we
have focused on rearranging the leading oscillators with
their own merit and selecting appropriate harmonic
terms from trigonometric expansion. These two have
been determined to be equally important for obtaining
better answers.

(v) The suggested strategy also yields outstanding results
for higher-order, while most strategies yield good
results for first-order answers but not good results for
higher-order.

(iv)
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