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Abstract

Summary: In systems biology, it is challenging to accurately infer a regulatory network from time-series gene
expression data, and a variety of methods have been proposed. Most of them were computationally inefficient in
inferring very large networks, though, because of the increasing number of candidate regulatory genes. Although a
recent approach called GABNI (genetic algorithm-based Boolean network inference) was presented to resolve this
problem using a genetic algorithm, there is room for performance improvement because it employed a limited rep-
resentation model of regulatory functions.
In this regard, we devised a novel genetic algorithm combined with a neural network for the Boolean network infer-
ence, where a neural network is used to represent the regulatory function instead of an incomplete Boolean truth
table used in the GABNI. In addition, our new method extended the range of the time-step lag parameter value be-
tween the regulatory and the target genes for more flexible representation of the regulatory function. Extensive sim-
ulations with the gene expression datasets of the artificial and real networks were conducted to compare our
method with five well-known existing methods including GABNI. Our proposed method significantly outperformed
them in terms of both structural and dynamics accuracy.

Conclusion: Our method can be a promising tool to infer a large-scale Boolean regulatory network from time-series
gene expression data.

Availability and implementation: The source code is freely available at https://github.com/kwon-uou/NNBNI.

Contact: kwonyk@ulsan.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A gene regulatory network (GRN) is represented by a directed graph
where nodes and edges denote genes/proteins and interactions be-
tween them, respectively, and the analysis of GRNs is crucial to
understand characteristics of complex biological systems. It is chal-
lenging to accurately infer a GRN from time-coarse gene expression
data due to the high-dimensional relationship among the regulatory
and regulated molecular components. Recent advances of high-
throughput RNA-seq technologies can produce the genome-scale
gene expression data, leading to development of many inference
methods based on the computational models such as Boolean net-
works (Kauffman, 1969), differential equations (Chen et al., 1999)
and Bayesian networks (Imoto et al., 2002). Among them, the
Boolean network model, where a gene state is represented by either
0 (ON) or 1 (OFF) value and a regulatory interaction is defined by a
Boolean function or logic table, has been popularly used for infer-
ence of GRNs because of the lowest computational cost. However,
most existing Boolean network inference methods such as the
reverse engineering algorithm (REVEAL; Liang et al., 1998), the

Best-Fit (Lähdesmäki et al., 2003) and the Bayesian approach (Han
et al., 2014) are not so scalable because they need an exhaustive
search for all possible combinations of regulatory candidate genes.
Accordingly, the feasible number of regulatory inputs was limited to
a very small value, even 2 or 3, which means that a relatively com-
plicated regulatory rule cannot be inferred accurately.

To resolve this problem, the mutual information which can meas-
ure the significance of relevance between a pair of variables has been
frequently considered. For example, the relevance network method
(Butte and Kohane, 2000) calculated the mutual information between
every gene pair and eliminated interactions with the mutual informa-
tion values less than a given threshold. The REVEAL (Liang et al.,
1998) identified a set of regulatory genes by maximizing a mutual in-
formation score for a target gene. The context likelihood of relatedness
algorithm (Faith et al., 2007) advanced the REVEAL by employing a
background correction of mutual information scores. The algorithm
for the reconstruction of accurate cellular networks (ARACNE) algo-
rithm (Margolin et al., 2006) inferred a network by determining a sig-
nificant gene under a constraint of the data processing inequality and
filtering out the weakest connection from every gene triplet. A common
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drawback of these methods is that they examined a pairwise mutual in-
formation instead of the exact multivariate mutual information due to
a high computational cost. This can cause a performance degradation,
particularly in large-scale inference problem. To overcome this limita-
tion, we had proposed a mutual information-based Boolean network
inference (MIBNI) which computed an approximated multivariate mu-
tual information more accurately than the pairwise mutual information
calculation (Barman and Kwon, 2017). It showed better performance
than the other existing inference methods in terms of the inference ac-
curacy and the running time. However, the solution found by MIBNI
was not still optimal and stuck in local optima, because of not only the
approximated measure but also the constructive optimization frame-
work. In this regard, a genetic algorithm-based Boolean network infer-
ence (GABNI) was suggested in another previous study (Barman and
Kwon, 2018), which can efficiently avoid the local optimum through
the genetic search algorithm, and it showed a significant performance
improvement over the existing methods. However, GABNI has a dis-
advantage in the representation of the network dynamics. It used a
Boolean truth table to describe the update rule, but the table is often in-
complete because the regulatory rule cannot be specified for unob-
served input conditions in the expression data. This relaxed constraint
can induce the undesirable early stopped solution and an inherent deg-
radation of inference accuracy. In addition, GABNI assumed only one-
time-step lag between the regulatory and the target genes, which has
limited the representation power of the regulatory relation.

In this article, we propose a novel neural network-based Boolean
network inference (NNBNI) method. Similar to GABNI, it exploits the
GA as a global search technique. However, our method replaced the in-
complete Boolean truth table with a feed-forward multilayered neural
network (NN) to represent the regulatory rule. In addition, NNBNI
extended the time-step lag parameter between the regulatory and the
regulated genes to represent more complex regulatory functions. Our
proposed method consists of two stages where MIBNI is first applied
because it can efficiently find a small-scale regulatory relation. If it fails
to find an optimal solution, a GA starts to search a better regulatory re-
lation. The fitness of a solution in the GA is evaluated by a multi-
layered NN which computes how accurately the state values of a target
gene is fitted by those of the GA-selected candidate regulatory genes.
This search process is independently executed for every target gene and
all the results are combined to generate the whole inferred Boolean net-
work. We note that there was a trial to combine a GA and a NN for
the network inference problem (Marbach et al., 2009). However, it was
intended to infer only the network structure by employing simple GA
operators such as one-point crossover and the performance over large-
scale networks was not validated.

For reliable performance assessment of our method, we further
included some recent tree-based approaches which have showed inter-
esting results for comparison. For example, the gene network inference
with ensemble of trees (GENIE3) algorithm (Huynh-Thu et al., 2010)
which selects a feature by a gene ranking using random forests or
extra-trees was recently proposed. It was extended to the dynamical
GENIE3 (dynGENIE3; Huynh-Thu and Geurts, 2018) by introducing
a new parameter, the decay rate of the genes. In addition, a boosted
tree-based gene regulatory network (BTNET; Park et al., 2018) using
Adaboost or gradient boosting to compute regulatory interaction
scores was successfully suggested. In this study, we compared NNBNI
with five other methods, GABNI, ARACNE, GENIE3, dynGENIE3
and BTNET. We tested them in both the large-scale gene expression
datasets from the artificial and real networks, and found that NNBNI
outperformed all the other methods. Taken together, NNBNI can be
considered as a promising tool for the Boolean network inference.

2 Materials and methods

2.1 A Boolean network model
In this study, we employed a Boolean network model to infer a
GRN from time-series gene expression data. A Boolean network
(Kauffman, 1969) is represented by a directed graph G(V, A) where
V ¼ fv1; v2; ::; vNg is a set of nodes and A � V � V is a set of
directed interactions. The value of a node is represented by a

Boolean value of 1 (ON) or 0 (OFF) and it is updated by a Boolean
function. For example, assume that a node v 2 V is regulated by k
other genes u1; u2; . . . ;uk (ui 2 V). It is then formulated as follows:
The value of v at time-step tþ1 denoted by vðt þ 1Þ is updated by a
Boolean function f : f0;1gk ! f0;1g of the values of u1;u2; . . . ;uk

at time-steps t; t � 1; . . . ; t � sþ 1, where s denotes the maximum
time-step lag between the regulatory gene and the target gene. In
other words, the update scheme of v can be written as:

vðt þ 1Þ ¼ f ðu1ðtÞ; . . . ; u1ðt � sþ 1Þ; u2ðtÞ; . . . ; u2ðt � sþ 1Þ;

� � � ; ukðtÞ; . . . ; ukðt � sþ 1ÞÞ:

Accordingly, a total of 22s�k Boolean functions are possible for f .
We note that the maximum time-step lag value (s) was fixed to one
in most existing studies including our previous method, GABNI
(Barman and Kwon, 2018). This limitation was usually set to reduce
the search cost which, however, has caused the reduction of repre-
sentation power of the regulatory function. In this regard, we have
loosened the constraint by extending s¼3 in this study.

2.2 The Boolean network inference problem
The Boolean network inference problem handled in this study is a
problem to infer not only a set of regulatory interactions but also a
set of update Boolean functions from the time-series gene expression
data. The inference performance can be assessed by comparing the
Boolean trajectory generated by the inferred network and the
observed Boolean time-series gene expression. Let v0ðtÞ the predicted
Boolean value of gene v at time t in the inferred Boolean network.
We define the gene-wise dynamics consistency Cðv; v0Þ as the simi-
larity between the Boolean trajectories of the observed gene expres-
sion vðtÞ and the estimated gene expression v0ðtÞ, as follows:

Cðv; v0Þ ¼

PT

t¼sþ1

IðvðtÞ ¼ v0ðtÞÞ

T � s
; (1)

where T is the total number of time-steps, and Ið�Þ is an indicator
function that returns 1 if the condition is true, otherwise 0. (Note
that the comparison can start from t ¼ sþ 1 considering the max-
imum time-step lag.) Finally, we can define the dynamics accuracy
of an inferred network as the average of gene-wise dynamics consist-
ency over all genes as follows:

Dynamics accuracy ¼

PN

i¼1

Cðvi; v
0
iÞ

N
:

2.3 Structural performance metrics
In case that the structure of a gold standard or ground-truth net-
work is known, we can further evaluate the inference performance
with respect to the network structure. To this end, we used three
measures: precision, recall and structural accuracy. Precision is the
ratio of correctly inferred connections over the total number of posi-
tive predictions as follows:

Precision ¼ TP

TPþ FP
;

where TP (true positive) and FP (false positive) denote the numbers
of correctly and incorrectly predicted connections, respectively.
Recall is the ratio of true predicted connections over the total num-
ber of actual connections:

Recall ¼ TP

TPþ FN
;

where FN (false negative) means the number of non-inferred con-
nections in GðV; AÞ. Structural accuracy is the ratio of correct pre-
dictions out of all predictions as follows:
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Structural accuracy ¼ TPþ TN

TPþ FPþ FN þ TN
;

where TN (true negative) is the number of correct negative
predictions.

2.4 MIBNI and GABNI methods
As described before, our proposed method includes the existing
method MIBNI (see Barman and Kwon, 2017 for details) because it
showed an excellent performance in the case of inferring a regula-
tory function with a relatively small number of input genes. MIBNI
consists of two main subroutine called MIFS and SWAP: The MIFS
subroutine selects the most informative k regulatory genes, U ¼
fu1; u2; . . . ;ukg � V for a target gene v based on an approximated
multivariate mutual information, and the SWAP subroutine tries to
improve the gene-wise dynamics consistency by iteratively swapping
the subsets of U and V nU until there is no improvement. MIBNI
used a simple update rule representation scheme based on only con-
junction or disjunction functions.

GABNI (see Barman and Kwon, 2018 for details) was devised to
improve the MIBNI by exploiting a GA which searches an optimal
solution represented by a set of regulatory genes. The fitness of a so-
lution is evaluated by the Boolean truth table that is optimally con-
structed from the observed Boolean gene expression dataset.
However, the inferred table can be incomplete because some ele-
ments in the table cannot be specified due to the deficiency of the
corresponding observation in gene expression data.

3 Our proposed method

In this work, we propose a novel NN-combined GA for Boolean net-
work inference (NNBNI), and Figure 1 illustrates the overall frame-
work. A real-valued time-series gene expression dataset is given as
input. Then, it is converted into a binarized dataset using a K-means
discretization method (MacQueen et al., 1967), which classifies all
expression values of each gene into two clusters marked by 1 (ON)
and 0 (OFF) to denote higher and lower expression level, respective-
ly. Given a target gene, our method searches an optimal regulatory
function through two stages. In the first stage, MIBNI is applied to
infer an optimal update rule because it was proven to be efficient if a
target gene is regulated by a relatively small number of regulatory
genes (Barman and Kwon, 2017). If the found solution is optimal
[i.e. the gene-wise dynamics consistency is 1.0; see Equation (1)], it
is marked as the resultant regulatory relation for the target gene.
Otherwise, a GA starts on the second stage to search a list of optimal
regulatory genes. It can be formulated as a combinatorial

optimization problem to select an optimal subset. The GA first gen-
erates a population consisting of a set of solutions randomly initial-
ized. Then it selects a pair of parent solutions from the population,

and a new offspring solution is created by the crossover and the mu-
tation operations in sequence. The fitness of the solution is evaluated

by the NN learning model, and the GA updates the population by
replacing a parent solution with the offspring solution. The loop is
repeated and the GA stops after a fixed number of generations. This

search process is independently executed for every target gene and
all obtained solutions constitutes a regulatory network along with

the regulatory functions. Table 1 shows the specified values of the
parameters used in GA and NN in this study. In the following sub-
sections, we describe each operation of our GA in detail.

3.1 Solution representation
A solution in our GA is used to represent a set of selected regulatory
genes. Let v 2 V ¼ fv1; . . . ; vNg a target gene. Then, a solution is
represented by a binary vector of length N such as s ¼ s1s2 � � � sN 2
f0;1gN where si indicates the inclusion or exclusion of vi in the set
of regulatory genes. For an efficient search, we set two constraints.

The first one is the maximum number of regulatory genes which pre-
vents a solution from having too many regulatory inputs (it was set
to 0:6�N in this study; see Table 1). The other one is the minimum

mutual information with a target gene. A gene whose mutual infor-
mation value with the target gene is lower than a given threshold is
not eligible for the selection, because it is not informative enough to

explain the relation of the target gene (it was set to 0.05 in this
study; see Table 1).

3.2 Fitness evaluation based on a NN
To evaluate a solution s, we employed a feed-forward NN with

a single hidden layer. Figure 2 shows an illustrative example where
s selects fv3; v5; v8g among V ¼ fv1; v2; . . . ; v10g. Assume

that the maximum number of the time-step lag was set to three
and v 2 V is a target gene. Then, nine inputs neurons,
viðtÞ; viðt � 1Þ; viðt � 2Þði ¼ 3; 5; 8Þ, and one output neuron of vðt þ
1Þ are generated as shown in the figure. The NN learns the gene ex-
pression data using the back-propagation algorithm which is a gra-

dient descent method to minimize the mean square error between
the estimated and the actual outputs. Once the learning is finished,
we define the fitness function of s using the gene-wise dynamics con-

sistency [see Equation (1)] as follows:

FitnessðsÞ ¼ 1

ð1� Cðv; v0ÞÞ � cþ k

where v0 is the predicted expression by the learned NN, c is a weight
factor and k is the number of regulatory genes chosen by the solu-

tion, in favor of a simpler regulation function.

Fig. 1. Overall framework of NNBNI. A real-valued time-series gene expression

data are converted into binary values. Given a target gene, MIBNI is first applied to

infer a simple regulatory Boolean function. If an optimal solution is found, it is

included in the final inferred network. Otherwise, a hybrid GA combined with NN

is applied to find a better solution. In the GA, the fitness of a solution is evaluated

by the NN learning. This process is independently executed for every target gene.

All inference results are integrated into a final inferred Boolean network where the

update function of each gene is represented by a NN

Table 1. Parameters of GA and NN in this study

Parameters Setting

GA Population size Nþ 10

Maximum number of regulatory

genes

0:6�N

Minimum mutual information 0.05

c in fitness function 28

H in adjusted fitness 3

Number of GA iterations 1000

Mutation probability 0.01

NN Learning algorithm Back-propagation

Activation function Sigmoid

Momentum 0.90

Number of hidden neurons Number of input neurons � 2

Learning rate 0.15
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3.3 Selection, crossover and mutation
For simplicity, we employed the same selection, crossover, and mu-
tation operators used in GABNI (see details in Barman and Kwon,
2018). Our GA selects two parent solutions from a population at
each generation. We defined a variant roulette wheel selection,
which is one of the most representative selection operators in the
GA field. Specifically, the selection probability of a solution s is pro-
portional to the adjusted fitness as follows:

Adjusted � FitnessðsÞ ¼ A� FitnessðsÞ þ B

where A ¼ H
FMAX�FMIN

and B ¼ 1�A � FMIN. Here, FMAX and FMIN

denote the maximum and the minimum fitness values in the popula-
tion, respectively, and H is a parameter which adjusts the selection
probability of the best solution to H times of that of the worst solu-
tion in the population.

After two parent solutions are chosen, a crossover operator is
applied to produce a new solution called offspring (Fig. 3). If the bin-
ary value of an element is common in both parents, it is copied to the
offspring (the white element in Fig. 3). Otherwise, it is selected be-
tween two parents uniformly at random (the yellow or the blue elem-
ent in Fig. 3). Finally, the mutation operator flips the value of each
element in the offspring with a small probability (Fig. 4), which helps
to prevent the GA fallen in the local optimum.

3.4 Replacement and stopping criterion
The fitness of the offspring created by the crossover and mutation
operators is evaluated by the NN as explained before. If the

offspring is superior to one of the parent solutions, the former repla-
ces the latter in the population for the next generation. The GA
stops after a fixed number of generations.

4 Results

For reliable performance evaluation, we compared NNBNI with
five other methods: GABNI (our previous method), ARACNE (a
mutual information-based constructive method), and three recent
tree-based approaches such as GENIE3, dynGENIE3 and BTNET.
We tested them with the gene expression datasets of both the artifi-
cial and real regulatory networks as shown in the following subsec-
tions. Since it is necessary to determine a threshold about the
confidence level of an inferred interaction in the compared methods,
we specified the best threshold value by trial-and-error over the
tested dataset. In addition, we added a function which searches a
Boolean update function for a given set of regulatory inputs into the
original ARACNE method so that the dynamics accuracy can be
examined. Finally, we note that all compared methods have been
modified to consider the same maximum time step with that used in
our method (see Supplementary Table S1 for the parameter values
of ARACNE, GENIE3, dynGENIE3 and BTNET specified in this
study).

4.1 Performance on the gene expression data of the

artificial networks
To generate the artificial gene expression datasets, we first created
randomly structured artificial networks by employing the Barabasi–
Albert (BA) model (Barabasi and Albert, 1999; see Supplementary
Fig. S1). Specifically, a total of 300 random networks with different
network sizes (jVj ¼ 10;20; . . . ; 100 and jAj ¼ 2:5� jVj) were cre-
ated. The update function of each gene was chosen uniformly at ran-
dom between a logical conjunction (AND) and disjunction (OR)
functions. Considering the definition of the maximum time-step lag
(s), the Boolean state values of all genes for the first s time-steps (i.e.
t ¼ 1; 2; . . . ; s) were randomly initialized (see Section 2). On the
other hand, the state values from time-step sþ 1 to T [the maximum
time-step; see Equation (1)] are synchronously determined by the
update functions. In this study, we set s and T to three and jVj þ 20,
respectively, and generated 30 different gene expression datasets for
each random network size. Therefore, a total of 300 random gene
expression datasets were generated for test.

4.1.1 Structural accuracy comparison

Figure 5 shows the results with respect to the structural accuracy of
the inferred networks. For more precise analysis, we classified all
target genes into 10 classes according to the number of incoming
links (D) ranged from 1 to 10. As shown in the figure, precision, re-
call and structural accuracy of all methods decrease as D increases,
because it denotes the degree of difficulty in the network inference
problem. We also observed that both NNBNI and GABNI always
found the optimal solution in the case of D ¼ 1. This is because
MIBNI is applied on the first stage in both methods. On the other
hand, NNBNI shows significantly higher precision, recall and struc-
ture accuracy than the other methods for all cases of D > 1. In other
words, our new method stably outperformed the other methods, ir-
respective of the degree of inference difficulty. We also note that the
overwhelming performance of NNBNI is consistently observed

Fig. 2. An example of the NN-based evaluation of a solution in GA. The example

solution selects fv3; v5; v8g among V ¼ fv1; . . . ; v10g as the set of candidate regula-

tory genes. Let v 2 V the target gene and assume that the maximum time-step lag is

set to 3. Accordingly, nine variables of v3ðtÞ; . . . ; v8ðt � 2Þ are used for the input

neurons whereas vðt þ 1Þ corresponds to the output neuron. Once the NN learns

the gene expression data, the gene-wise dynamics consistency can be obtained to

represent the fitness of the solution

Fig. 3. The crossover operator. Parents 1 and 2 include fv2; v4; v6; v8g and

fv3; v6; v7; v9g for regulatory gene sets, respectively. If a bit value in a gene is equiva-

lent to both parents, it is copied to the corresponding gene in the offspring (white

color). Otherwise, a bit value selected between two parents uniformly at random

(yellow or blue color) is copied

Fig. 4. The mutation operator. The example offspring solution selects fv3; v5; v8g as

regulatory genes. Each gene is mutated with a small probability. In this example, the

values of v5 and v9 were flipped
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regardless of the network size (see Supplementary Figs S2–4).
Furthermore, we have analyzed the inference performance in the noisy
gene expression dataset. The noise was added by flipping the Boolean
gene value at 5% or 10% probability in each dataset. We observed
that NNBNI robustly outperformed the other methods in all terms of
precision, recall and structural accuracy (Table 2). In addition, we
conducted the sensitivity analysis with respect to four main parameters
in Table 1 and observed that the structural accuracy can be sensitive
to them (see Supplementary Table S2). This implies that it is needed to
carefully specify the parameter values in NNBNI.

4.1.2 Dynamical accuracy comparison

Figure 6 shows the results with respect to the dynamical accuracy
of the inferred networks. As shown in Figure 6a, we compared the
dynamics accuracy of every method in BA random networks
against the network size (jVj ¼ 10; 20; 30; . . . ; 100).
Intriguingly, both NNBNI and GABNI outperformed the other
methods over all tested datasets. In particular, the performance
gap with other methods increased as the network size grows.
Moreover, the dynamics accuracies of both NNBNI and GABNI
were 1.0 (i.e. perfect prediction) in all networks, which means
that the GAs in NNBNI and GABNI always found the optimal so-
lution in terms of the gene-wise dynamics consistency [see

Equation (1)]. This result can cause a confusion considering that
NNBNI showed better performance than GABNI with respect to
the structural accuracy in Figure 5. In an effort to discover the
reason for it, we further compared the convergence speed of the
GAs in NNBNI and GABNI (Figure 6b). Specifically, we exam-
ined the change of average dynamics accuracy of the best solution
in each GA against the number of generations. As shown in the
figure, the GA in NNBNI converges more slowly than that of
GABNI. This is because GABNI uses the incomplete truth table to
represent the regulatory function. In other words, GABNI can be
early stopped although every field in a truth table is not specified
due to the deficiency in the gene expression dataset. On the other
hand, the regulatory function found by NNBNI is represented by
a NN and thus it represents a complete Boolean function which
can eventually specify all fields of a truth table. This observation
implies that the change of the regulatory function representation
from the incomplete truth table to the NN in the GAs led to the
performance improvement with respect to the structural accuracy
without loss of the dynamical accuracy. In addition, NNBNI can
have another advantage over GABNI even in case that both cor-
rectly infer the regulatory relation, because the former is more
likely to be able to derive a Boolean function from the complete
truth table induced by the NN (see e.g. Supplementary Fig. S5).
Finally, we examined the convergence speed of NNBNI according
to the degree of problem difficulty (Fig. 6c). Specifically, we clas-
sified all the genes into 10 groups according to the number of in-
coming links and examined the average dynamics accuracy of the
best solutions in NNBNI for every 100 generations. It is obvious
that the GA converges to the optimal solution more slowly as D
increases. In the most difficult cases, NNBNI found the best solu-
tion at about 700 generations.

4.1.3 Running time

To compare the running time of NNBNI and other methods, we
examined the average running time over a total of 300 gene expres-
sion datasets on a PC with Intel Core i7 3.4 GHz CPU and 8 GB of
RAM (Fig. 7). As shown in the figure, the dynGENIE3 was fastest
on average whereas NNBNI and GABNI were slowest due to the
genetic search. In addition, NNBNI was slower than GABNI be-
cause the GA of the former converges more slowly than that of the
latter as we observed in Figure 6b. However, we note that the scal-
ability of NNBNI was not worse than the other methods as the net-
work size increases. As a result, it is most desirable to employ our
method when the highest inference accuracy is required, in spite of
the increased running time.

4.2 Performance on the gene expression dataset of the

real networks
4.2.1 Case study 1: small-scale real networks

We applied our novel approach to infer four real small-scaled net-
works (see Supplementary Fig. S6 for the gold-standards). The

Fig. 5. Comparison of precision, recall and structural accuracy between NNBNI and other methods in BA random networks. Results of (a) precision, (b) recall and (c) structural

accuracy, respectively. A total of 300 random networks with 10 different network sizes jVj ¼ 10; 20; . . . ; 100 were created and 30 Boolean gene expression datasets were gen-

erated for each network size. A total number of 16 500 nodes in those networks were examined and classified into 10 groups according to the number of incoming links. Y-axis

values show the average precision, recall and structural accuracy values in each group. Detailed results per the network size are shown in Supplementary Figures S2–4

Table 2. The structural accuracies in inferring the Boolean GRN

from a noisy gene expression.

Noise level Inference methods TP FP FN Structural accuracy

0% Noise NNBNI 16 3 9 0.8787

GABNI 13 8 12 0.8039

ARACNE 10 20 15 0.6666

GENIE3 10 22 15 0.6476

dynGENIE3 14 16 11 0.7326

BTNET 14 10 11 0.7920

5% Noise NNBNI 14 14 11 0.7524

GABNI 10 14 15 0.7238

ARACNE 7 27 18 0.5833

GENIE3 8 27 17 0.5887

dynGENIE3 8 19 17 0.6635

BTNET 8 16 17 0.6915

10% Noise NNBNI 12 17 13 0.7087

GABNI 9 21 16 0.6509

ARACNE 6 30 19 0.5504

GENIE3 6 29 19 0.5596

dynGENIE3 7 22 18 0.6296

BTNET 6 22 19 0.6238

Note: The structural accuracy of NNBNI was significantly higher than

those of other methods (All p-values < 0.01).
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first network is the yeast cell-cycle network consisting of 9 genes
and 17 interactions (Simon et al., 2001). It has two types of ex-
pression datasets (Spellman et al., 1998), CDC-15 and CDC-28,
measured over 24 and 17 time points, respectively. The next two
networks, In Silico-1 and -2, are from the benchmark datasets in
DREAM4 challenge (Marbach et al., 2010). Both of them consist
of 10 genes and 16 interactions and the gene expression datasets
were measured over 21 time points. The last one is
Saccharomyces cerevisiae G1 cell-cycle network consisting of 11
genes and 22 interactions (Rubiolo et al., 2018) where the expres-
sion dataset was measured over 18 time points. These five real-
valued gene expression datasets were converted into the Boolean
values using a K-means discretization method (MacQueen et al.,
1967; see Supplementary Tables S3–12). Table 3 shows the struc-
tural accuracies of all methods. As shown in the table, NNBNI
showed the best structural accuracies in all datasets. We depicted
five inference results of NNBNI in Figure 8 (see Supplementary
Figs S7–11 for the results of other methods). We also computed
the dynamics accuracy (Table 4) and observed that NNBNI and
GABNI significantly outperformed all other methods. Moreover,
NNBNI achieved the perfect dynamics accuracy in four datasets
except for S.cerevisiae.

4.2.2 Case study 2: large-scale real networks

In this subsection, we tested whether the inference method is applic-
able to a large-scale real network. To this end, we generated a large-
scale network structure by using the GeneNetWeaver (GNW) tool
(Schaffter et al., 2011) which extracts modules from known bio-
logical interaction networks. The gold standard or reference net-
works are extracted from a transcriptional regulatory network of

S.cerevisiae. Then real-valued time-series expression datasets were
generated based on stochastic ordinary differential equations. Five
networks with a different size of (jVj, jAj) ¼ (100, 251), (200, 431),
(300, 712), (400, 1221) and (500, 2073), which are denoted by
GNW100, GNW200, GNW300, GNW400 and GNW500, respect-
ively, were tested. Table 5 shows the structural accuracies. As shown
in the table, NNBNI significantly outperformed all other methods
and GABNI showed the second best performance. In addition, we
examined the dynamical accuracy (Table 6) and observed that
NNBNI was best overall datasets. Taken together, our method out-
performed all other methods in terms of both the structural and the
dynamical inference accuracies in the large-scale gene expression
dataset of the real regulatory networks.

5 Conclusions

In this work, we developed NNBNI which is a hybrid GA combined
with a supervised NN model to infer a Boolean network from time-
series gene expression data. Although many inference methods have
been developed, most of them were not efficient to infer large net-
works due to the scalability problem. In this study, we proposed a
novel method which is a NN-combined GA. A NN was used not
only to evaluate the quality of a solution in the GA but also to repre-
sent the regulatory function. It is notable that the NN replaced a
Boolean truth table which was used for regulatory function repre-
sentation in our previous model. In addition, we more generalized
the regulatory function representation by increasing the time-step
lag parameter between the regulatory and the target genes. We con-
ducted extensive simulations with the gene expression datasets of
both the artificial and real networks and compared the performance
of our method with those of five well-known existing methods. Our
method significantly outperformed them in terms of both structural
and dynamics accuracy. These results indicate that the proposed ap-
proach is a promising tool for accurate regulatory networks from
time-series gene expression data. One limitation of our method is
that the NN is a black-box model, so the regulatory function is not
explained in the form of rules. In addition, it is necessary to imple-
ment our method in parallel to reduce the running time. Finally, we

Fig. 7. Comparison of running time of NNBNI and other methods. The Y-axis val-

ues represent the average log-scaled running time. Among all methods, dynGENIE3

was fastest, whereas NNBNI and GABNI were slowest

Table 3. Structural accuracies of inference of small-scale real

networks

Methods CDC-15 CDC-28 In Silico-1 In Silico-2 S.cerevisiae

NNBNI 0.7820 0.7654 0.7653 0.8144 0.7661

GABNI 0.7160 0.7073 0.7373 0.7777 0.7120

ARACNE 0.6585 0.5476 0.6633 0.6000 0.6796

GENIE3 0.6125 0.5421 0.5533 0.6237 0.6720

dynGENIE3 0.6097 0.5609 0.6435 0.6336 0.6666

BTNET 0.5802 0.5662 0.6800 0.7600 0.6929

Fig. 6. Dynamics accuracy analysis. (a) Comparison of dynamic accuracies between NNBNI and other methods in BA random networks. A total of 300 random networks with

10 different network sizes were created and 30 Boolean gene expression datasets were generated for each network size. Each point denotes the average dynamics accuracy over

30 datasets. Note that the dynamic accuracies of both NNBNI and GABNI were 1.0 in all datasets. (b) Comparison of convergence between GABNI and NNBNI. BA random

networks with jVj ¼ 100 were examined. (c) Convergence of dynamics accuracy against the number of generations in NNBNI. BA random networks with jVj ¼ 100 were ana-

lyzed and the nodes were classified into 10 groups according to the number of incoming links. The average dynamics accuracy of the best solutions was shown for every 100

generation
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note that NNBNI does not rank the regulatory relations and auto-
matically determines the number of regulatory genes according to
the found best solution. This implies that it is not available to com-
pute the area under the precision recall curve and the area under the
receiver operating characteristic scores for performance comparison.
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